Stellar Populations of Quiescent Barred Galaxies Paper Accepted!

A new paper using Galaxy Zoo 2 bar classification has recently been accepted!

In this paper (which can be found here: http://arxiv.org/abs/1505.02802), we use hundreds of SDSS spectra to study the types of stars, i.e., stellar populations, that make up barred and unbarred galaxies. The reason for this study is that simulations predict that bars should affect the stellar populations of their host galaxies. And while there have been numerous studies that have addressed this issue, there still is no consensus.

A graphic summary of this study is shown here:

stellarpop_bars_fig1_2015-02-16

In this study, we stack hundreds of quiescent, i.e., non-star-forming, barred and unbarred galaxies in bins of redshift and stellar mass to produce extremely high-quality spectra. The center-left panel shows our parent sample in grey, and the cyan and green hash marks represent our galaxy selection for our bulge and gradient analysis. The black rectangle represents one of the bins we use. The upper and lower plots show the resultant stacked spectra of the barred and unbarred galaxies, respectively. We show images of barred and unbarred galaxies in the center, selected with the Galaxy Zoo 2 classifications. Finally, the center-right panel shows the ratio of these two stacked spectra at several wavelengths that reflect certain stellar population parameters.

Our main result is shown here:

stellarpop_vs_mass_fig2_2015-02-16_alf

We plot several stellar population parameters as a function of stellar mass for barred and unbarred galaxies. Specifically, we plot the stellar age, which gives us an idea of the average age of a galaxy’s stars, stellar metallicity ([Fe/H]), which gives us an idea of the relative amount of elements heavier than hydrogen in a galaxy, alpha-abundance ([Mg/Fe]), which gives us an idea of the timescale it took to form a galaxy’s stars, and nitrogen abundance ([N/Fe]), which also gives us an idea of the timescale it took to form a galaxy’s stars.

The main result of our study is that there are no statistically significant differences in the stellar populations of quiescent barred and unbarred galaxies. Our results suggest that bars are not a strong influence on the chemical evolution of quiescent galaxies, which seems to be at odds with the predictions.