Archive | Radio Galaxy Zoo RSS for this section

Shedding light on the mutual alignment of radio sources

The following blogpost is from Omar Contigiani about the Radio Galaxy Zoo paper that he published recently on the cosmic alignment of radio sources.

In the Radio Galaxy Zoo an incredible variety of creatures can be found — as our citizen scientists might know by now, radio sources in the sky can have all sorts of shape and sizes. The most powerful among them are plasma-filled jets emitted by the some of the largest elliptical galaxies in existence. Because of their precise structure, anyone can associate orientations to these sources by simply looking at the directions the jets point at.

omar_alignment

Figure 1: Illustration of jet orientations distributed in the sky.  Note that this figure only depicts a small fraction of the total area covered by the observations upon which RGZ is based.  Credit: NASA, ESA, S. Baum & C. O’Dea (RIT), R. Perley & W. Cotton (NRAO/AUI/NSF).

Recently, our scientists have been looking at the directional properties of these fascinating beasts.  If a particular source points in a direction, is it possible that its neighbours also tend to do the same? Because the distances between adjacent objects are (quite literally) astronomical, it seems intuitive to assume that the relative orientations should be random. However, nature always finds subtle ways to mess with our intuition and it turns out that this is currently an open question in astronomy.  Thanks to Radio Galaxy Zoo’s numerous (almost two million) image classifications, the team was able to report the most precise measurement of this effect to date.  The results are available in a scientific article published in Monthly Notices of the Royal Astronomical Society this November.

The analysis performed in the study suggests that relative alignment of radio sources is present on distances which are dubbed as cosmological.  This is because only phenomena related to the history of the Universe as a whole are known to be connected to such large scales.

While this is an exciting step towards an answer, formulating any conclusive statement about this alignment and the reasons behind it appears to be difficult. What drives this effect? Is it related to a shared history or environment? More science needs to be done and more galvanising discoveries are waiting for us just around the corner.


Once again, without the contributions made by our volunteers all over the world, we would not have been so successful in our endeavours.  A big thank you to all our Radio Galaxy Zooites!

However, we have only reached 74% of our classification target. Head to Radio Galaxy Zoo to become involved and you will be contributing to real science being done today and may be co-authoring another great discovery with us!

 

RGZ team spotlight: Francesco de Gasperin

fra

Meet Francesco de Gasperin, an associate science team member (since 2015) who is very interested in the classifications resulting from Radio Galaxy Zoo

I am a VENI fellow at the Leiden University in the Netherlands. My research is mainly based on developing and exploiting new technologies in radio-astronomy to study active galactic nuclei (AGN), galaxy clusters, galaxies and ultimately everything which emits radio waves. I am part of the LOFAR collaboration and most of my time is invested in the commissioning of this new radio-telescope. I am now leading the effort to calibrate the low band antennas of LOFAR to observe the sky at decameter wavelength. Our plan is to ultimately produce the lowest frequency radio survey ever done.

I did my PhD at the Max Planck Institute for Astrophysics in Munich on a thesis titled: “The impact of radio-emitting supermassive black holes on their environment: the LOFAR view of the Virgo cluster”. During my master I also worked for the Planck mission, a satellite designed to study the Cosmic Microwave Background (CMB) – the relic radiation from the Big Bang.

******************

What has Francesco and his student, Omar Contigiani  done lately ?

Is the orientation of radio galaxies totally random? Or is it driven by the large scale structure where galaxies are embedded in? Recently, some works on small regions of the sky claimed an intrinsic alignment of radio sources. This is in line with the observed alignment between quasar jets and the surrounding large scale structure at higher redshifts.

With the help of the RGZ we are now able to identify the orientation of a very large number of radio galaxies. This allows us to expand these studies to unprecedented scales, moving from regions of few square degrees to around 10 thousands.

 

 

Can we reach 2 million classifications?

RGZ-2million

Radio Galaxy Zoo is halfway through its fourth year.  We are going through all the classifications and finalizing our 1st data release.  We could not have gotten this far without all of you. From the bottom of our hearts, we THANK YOU.

We have reached 71% completeness and sit just over 1,959,000 classifications.  Can we reach 2 million?

As we did with our 1 million classification milestone, we invite you to classify our 2 million-th Radio Galaxy Zoo supermassive black hole.  We have been working hard on Radio Galaxy Zoo merchandise (mugs, holographic bookmarks, and stickers). These are up for grabs for those who classify near or on number 2 million.

As always, make a note (click on discuss) if you have found something interesting, confusing, or if you have a question.

Start your hunt for active supermassive black holes at Radio Galaxy Zoo.

 

 

RGZ Team Spotlight: James Ansell

Hi everyone! I’m James and I’ve joined the RGZ team as a Communication/Engagement intern. I’m a PhD Candidate at the Australian National Centre for the Public Awareness of Science (CPAS) which is part of the Australian National University (ANU). I’m also a Sessional Academic (read: Tutor and marker) for a couple undergraduate courses covering things from ‘the Public Awareness of Science’ to ‘Science, Risk and Ethics’. And to pay the bills I work for the ANU in an administration role at (essentially) the Business School as well as a few other odd jobs.

But I am at heart an errant astronomer – having double majored in Astronomy/Astrophysics and Science Communications at the ANU for my B.Sci, graduating with Honours in 2015. I grew up in Alice Springs in the middle of Australia and had a purely spectacular night sky to look at. Something I only appreciated when I lived Brazil after graduating high school.

As part of my undergraduate studies I did dabbled a bit in some astronomy research. Firstly I did a project with Dr Charley Lineweaver (if you don’t know Charley, you should!) looking at the (surprisingly fuzzy) distinctions we make between objects in space e.g. planet, dwarf-planet, asteroid, moon. Let’s just say the project didn’t go where I thought it would.

Secondly, as part of an Astronomy Winter School I did research looking for ‘intergalactic stellar bridges’. Essentially chains of stars going from one galaxy to another which may have played a role in stellar formation in galaxies. I think. It was several years ago and the weather was against us when we went to do observations, so it didn’t go anywhere and my memory is pretty fuzzy on the details.

Outside of academia, I was involved in the ANU Black Hole Society (the Astronomy Club), the ANU Physics Society and the Science Communication Society. Also I absolutely love the TV series Cosmos, both the Carl Sagan original which I saw as a teenager and then the Neil deGrasse Tyson remake from a few years ago.

Since my astronomy research didn’t turn out particularly well, I ended up going down the science communication route. I’ve since done research looking into the effects of fictional doctors on young people’s perceptions of healthcare, factors affecting the uptake of vaccinations in Australia and the relationship between people’s perceptions of ‘Superfoods’ and their health behaviours. But I do miss the Astronomy and Astrophysics side of things so I’m super excited to be able to combine my two interests as part of the Radio Galaxy Zoo team.

(Also for some random fun facts about me – I used to host a music program on a Canberra community radio station, I founded the Canberra pop-culture festival ‘GAMMA.CON’ which is basically our local Comic-Con and I fly Hot Air Balloons with the ACT branch of the Scout Association.)

I’ll be hanging around in the forums under the name ‘JRAnsell’ and am keen to hear from you – if you’ve got questions about RGZ specifically or astronomy more broadly let me know! You can also hit me up on Twitter @radiogalaxyzoo or at radiogalaxyzoo@gmail.com.

The shoulder of Giants

To stand on the shoulder of giants, we first have to find them.   In Radio Galaxy Zoo, we are of course referring to the hunt for Giant Radio Galaxies.  These Giants can provide us with valuable insights into the environment in which they reside as well as the evolution of radio AGN.   In this post, I will present a summary of the highlights that Heinz A. has reported on RGZ’s search for Giants in 2016.

As of late September 2016, RGZ citizen scientists have uncovered at least 313 Giant candidates which are larger than 1 Mpc in projected size.  Of the 313, 201 are new discoveries made by RGZ!  Of course, follow-up observations and further verification checks are required.  However, this is still fantastic job and no small feat by the team.  A big thank you goes to RG Zooite Antikodon & Dolorous_Edd for paving the way again and discovering ~78% of these Giant candidates.  To put things into perspective, if one wanted to extract a list of Giants from the NASA Extragalactic Database (NED; a well-known archive used by professional astronomers) one would find only 55 objects tagged as Giant Radio Galaxies!  This is partly due to the fact that in publications such objects are not always explicitly labelled as such.  Here is Heinz’s table comparing the properties of the published Giants versus the newly-discovered RGZ candidates :

Property Published New RGZ candidates
Number 231 201
Median redshift 0.26 0.57
Median linear size (Mpc) 1.3 1.18
Number (size> 2 Mpc) 29 6

It is clear that RGZ is leading the pack in collating and cataloguing these unusual radio galaxies.  With our upcoming observing run using the Gemini-North 8-meter telescope in Hawaii, we will be following up several of these candidates.

j11021345first9x9_heinz

FIRST image of an example of one of the largest known Giant Radio Galaxy J1102+1345

My warmest congratulations again to the Giants Team! Keep up the fantastic work. After all, we still have a third of RGZ to complete and I am sure more Giant candidates will be discovered in 2017.  More information can be found at the Giant team’s RadioTalk Discussion thread.

 

 

 

There be S-DRAGNs!

This end-of-year post is written by Jean Tate, an RGZ citizen scientist and associate science team member who is providing us with the 2016 update on her team’s hunt for more Spiral Double Radio-lobe AGNs — SDRAGNs.   My warmest congratulations again to the SDRAGN Team!  I will be sure to look out for more SDRAGN news in 2017.  More information can be found at the SDRAGN team’s RadioTalk Discussion thread.

—————————————-

A small band of intrepid scientists – citizen and regular – have been hunting SDRAGNs for quite some time now.  These strange beasts were mythical, until 1998 when one was spotted above the Antipodes (it goes by the highly memorable name of 0313-192 … not).  Since then a dozen or so other Spiral galaxies which host Double Radio lobes (and which have Active Galactic Nuclei; SDRAGN, get it?) have been bagged. With thousands of sharp-eyed citizen scientists, RGZ is an ideal place to look for more.

It has been relatively easy to find  SDRAGN candidates – two known ones were flagged by RGZooites, who were quite unaware of their status – but rather more challenging to turn candidates into certainties; for example, chance alignments can appear very convincing. Anyway, from ~a thousand “possibles”, the SDRAGN team picked ten really promising ones, and is now writing up a paper on them (actually, while doing some final checks, two of the ten turned out to be imposters; never mind, there are dozens more good candidates for a second paper).  Curiously, one of the most difficult questions was (and still is) “is this really a spiral?”

jtsdragnThe figure above shows J1649+26, an SDRAGN published by Minnie M. in 2015 (URL Link to her paper).  The red contours represent the double radio lobes emanating from the supermassive black hole of this galaxy.

You can see some of the SDRAGN candidates in RGZ Talk, by searching for the hashtag #SDRAGN (some will also have the hashtag #spiral; many candidates do not have either hashtag). If you find an SDRAGN candidate, please include the #SDRAGN hashtag in your comment.

Happy 3rd birthday Radio Galaxy Zoo!

gwat

In 2016, you have all contributed to more than 16 years of continuous classification and our project is now two-thirds of its way to completion and what a year it has been!

The biggest science news coming out of Radio Galaxy Zoo this year will have to be the official publication of the Matorny-Terentev cluster of galaxies, (RGZ-CL J0823.2+0333) –named after two of our super-Zooites who discovered the Giant Wide-Angle Tail galaxy (shown in white contours to the left, Banfield et al 2016).   We have also made great progress across several RadioTalk projects such as the Giants, the Spiral-DRAGNs, the Green DRAGNs and the HyMoRS.    Therefore, we will be providing more detailed updates from the team leaders in the coming weeks so please stay tuned for more exciting Radio Galaxy Zoo science highlights from 2016.

Our science team has also been evolving and this year, we bade farewell to Kyle W. and Chris S. who are pursuing new adventures and we sincerely thank them for all the fish.  We also saw the arrival and departure of Tim F., our ANU outreach student who worked with Julie and we hope that you have enjoyed his blog posts earlier this year.

This year, the RGZ science team welcomes Meg Schwamb from Gemini Observatory (who helped with the Chinese translation of RGZ) and Jean Tate, the first RGZ citizen scientist to become an associate member of the RGZ science team.  Meg will be helping us with the upcoming RGZ follow-up observations using the Gemini telescope.

We also have a new student joining our team and working with Julie in the coming year. Meet James L.,  a PhD Candidate in Science Communication at the Australian National Centre for the Public Awareness of Science. He completed his Bachelor of Science (Hons) in 2015 at the Australian National University with a double major in Astronomy/Astrophysics and Science Communication.  I am sure that you’ll hear more from James himself in the coming year.

Thank you all very much for your support again. We are most grateful for your help thus far. To finish the remaining third of the project, we seek your help in the coming days, months & year to complete this monumental task.

We wish you all a wonderful holiday period and a great upcoming year!

Cheers,

Ivy, Julie & RGZ team

 

 

Discovered galaxy cluster named after two citizen scientists

This post was written as a contribution by Timothy Friel, an undergraduate Australian National University student studying Theoretical Physics and Science Communication. Tim is conducting research into citizen science projects and their social media communication strategies.


Hats off to two of our volunteer participants who have officially been written in the stars.

The Matorny-Terentev Cluster RGZ-CL J0823.2+0333 bears the name of the two citizen scientists who pieced together its structure.

Ivan Terentev and Tim Matorny, two Radio Galaxy Zoo participants from Russia, discovered that a particular radio-source had a line of radio blobs delineating a C-shaped ‘Wide-Angle Tail galaxy’ (WAT). The massive galaxy hosting the super-massive black hole and its associated jets are moving through intergalactic gas, causing the jets to fold back, similar to the way a sky-diver’s hair is shaped by the wind.

giantWAT-pink-zoom

Figure 1: The new discovery: The C-shaped “wide angle tail galaxy” (pink) surrounded by the galaxies of the Matorny-Terentev cluster (white). Julie Banfield, Author provided

This discovery has been published this week in the prestigious scientific journal Monthly Notices of the Royal Astronomical Society, with the paper “Radio Galaxy Zoo: discovery of a poor cluster through a giant wide-angle tail radio galaxy” (accessible for free via bit.ly/RGZpaperWAT).

Lead author of the study, Dr Julie Banfield of CAASTRO at The Australian National University (ANU), said that the discovery surprised the astronomers running the program.

“They found something that none of us had even thought would be possible”, said Dr Banfield.

More details of the research team’s response and the next steps for the project can be read in the press release published by CAASTRO (bit.ly/PR14June16).

A huge congratulations must go to the two citizen scientists, Ivan and Tim, for their efforts to work collaboratively to make this discovery. It is great to witness that physical and language barriers have been unable to halt amazing scientific endeavours.

A further thank you must also be noted for the Radio Galaxy Zoo team, in particular the joint project leaders Dr Julie Banfield (ANU) and Dr Ivy Wong (ICRAR at UWA), alongside Dr Anna Kapinska (ICRAR at UWA), Dr Ray Norris (CSIRO/WSU) and all other members of the international project. The team’s continued energy to motivate volunteer participants to develop their own research projects has uncovered the immense potential of citizen science as both a research tool and a method of bringing people together across the globe.

Finally, the Radio Galaxy Zoo team would like to thank the 10,000 volunteers globally who have volunteered to conduct over 1.6 million image classifications over the past two and a half years. The dedication of volunteers to this project has bred a supportive community which has now completed almost 60% of the dataset, a feat unable to be achieved by any single individual.

If you would love to become involved in this international astronomical community, please head to bit.ly/RadioGalaxyZoo1 and begin your journey to uncover the depths of our universe and its wonders, all from the comfort of your own home.


ANU: Australian National University
CAASTRO: Australian Research Council Centre of Excellence for All-Sky Astrophysics
CSIRO: Commonwealth Scientific and Industrial Research Organisation
ICRAR: International Centre for Radio Astronomy Research
UWA: University of Western Australia

Exclusive interview with our recent Citizen Science co-authors

This post was written as a contribution by Timothy Friel, an undergraduate Australian National University student studying Theoretical Physics and Science Communication. Tim is conducting research into citizen science projects and their social media communication strategies.


Meet two of our fantastic Zooniverse members who have been recognised as co-authors for a RGZ submitted paper.

In March 2016, the Radio Galaxy Zoo (RGZ) team submitted a paper which is co-authored by two of our SuperRGZooites. Thanks to the help of citizens around the world, over 1.6 million classifications have been made. However, a very special thanks must go to two citizens who have been greatly involved in our most recent submitted paper.

19MAR2016

Meet Ivan Terentev and Tim Matorny, our Citizen Science co-authors.

How did you discover Radio Galaxy Zoo and become involved?

Tim: I had a passion for research and to be involved with generating new knowledge. So I began to look and met [the world of] citizen science and tried many different projects. I was already familiar with the Zooniverse, when I got email about new project – RGZ.

Ivan: I became involved in RGZ from its beginning, more or less, in December 2013, and at that time I was part of the Zooniverse for two years. I was mostly contributing to the Planet Hunters project back then, but occasionally I switched to different projects just to look for what they have to offer. And it was during one of these “Let’s try something different” moments that I discovered RGZ through the announcement post in the Galaxy Zoo blog.

What parts kept you interested and motivated to stay a part of this project?

Tim: The team of scientists and their active participation is an important part. Their blog posts, comments and links have helped me to learn about the project and my involvement with the goals.
Looking for host radio lobes which are separated by a 10′ [minutes] or looking at the behaviour of jets in galaxies clusters is really exciting for me. I like that RGZ covers a wide range of data: radio, optics, IR, X-ray.

Ivan: If we are talking specifically about RGZ, it would be the RGZ Talk community and the fact that RGZ Science team is eager to communicate with simple volunteers and involve them in the research process. But a large portion of my motivation [for RGZ] is the same as for the rest of the Zooniverse projects. You see, I am sci-fi fan and it made me interested in space exploration. I like to watch documentaries about the astronomers, their work and all the amazing stuff in the universe around us and through the Zooniverse I can actually be involved in the process of science and help to shape the future, even if it just by a very tiny fraction. I never thought that something like this would be possible before I discovered Zooniverse.

How do you feel about being a co-author of a scientific research paper?

Tim: I am still amazed and feel more motivated to look for stunning new radio galaxies.

Ivan: This isn’t the first time actually, I am also a co-author for three papers from the Planet Hunters, BUT it is always awesome, like every single time! Although, I keep my head cool over that since most of the work was done by the professional scientists. A huge thanks to them for the acknowledgment of my small contribution in the form of inviting me to be a co-author in their paper. With this RGZ paper, I got a chance to see the whole process of science starting from the simple question “What is that?” and then people trying to figure out what is going on, schedule observations, discussing things and I have been a part of it! All the way through the process, ending with the actual published science article. It was an amazing experience!


Without the contributions made by our volunteers all over the world, we would not have been so successful in our endeavours.

However, we have only reached 57% of our classification target. Head to www.bit.ly/RadioGalaxyZoo1 to become involved and you could be co-authoring another great discovery with us!

Radio Galaxy Zoo Highlights from 2015

Happy New Year!  I hope everyone had a relaxing break. Radio Galaxy Zoo had a couple of highlights over the last year with new discoveries that will be out later this year.  Well done everyone!

We now have over 1.45 million classifications and are at 48% complete.

Here are a few of our notable highlights:
Papers
Surprises
  • progress on the giant WAT is continuing to bring up more interesting information including our JVLA data – potentially 3 additional papers;
  • we obtained 4 hours to obtain a spectrum for four of our green DRAGN with the observations scheduled for March 2016; and
  • with all your work, RGZ has discovered over 100 new giant radio galaxies!
We are continuing to work away on the data that keeps coming in.  Keep your eye out for our next few projects:
  • matching of RGZ classifications to SDSS;
  • merging Galaxy Zoo data with Radio Galaxy Zoo data;
  • our observations with the JVLA on the hybrid radio sample is complete with 60 hours of observing time; and
  • we are working with the International Astronomical Union (IAU) to get the RGZ name official.
A big welcome to our new team members:
  • Martin Hardcastle (Hertfordshire)
  • Sarah White (ICRAR/Curtin)
  • Francesco de Gasperin (Leiden)
All of this could not have been accomplished without all of you – big THANK YOU! Looking forward to a great 2016!
Julie, Ivy and the RGZ team