Zoo Gems – Hubble does Galaxy Zoo(s)

Since mid-2018, the Hubble Space Telescope has taken occasional short-exposure images, filling what would otherwise be gaps in its schedule, of galaxies in the list from “Gems of the Galaxy Zoos” (otherwise known as Zoo Gems). The Zoo Gems project just passed a milestone, with acceptance of a journal paper describing the project, including how votes from Galaxy Zoo and Radio Galaxy Zoo participants were used to select some of the targeted galaxies, and acting as a sort of theatrical “teaser trailer” for the variety of science results coming  from these data. (The preprint of the accepted version is here; once it is in “print”, the Astronomical Journal itself is now open-access as of  last month). The journal reviewer really liked the whole project: “The use of the Galaxy Zoo project’s unique ability to spot outliers in galaxy morphology and use this  input list for a HST gap filler program is a great use of both the citizen science project and the Hubble Space Telescope” and “I think it is a wonderful program with a clever, useful, and engaging use of both SDSS and Hubble.” (We seldom read statements that glowing in journal reviews).

Zoo Gems got its start in late 2017, when the Space Telescope Science Institute (STScI) asked for potential “gap-filler” projects. Even with  what are known as snapshot projects, there remained gaps in Hubble’s schedule long enough to set up and take 10-15 minutes’ worth of high-quality data. We put together a shockingly brief proposal (STScI wanted 2 pages, originally to gauge interest) and were very pleased to find it one of 3 selected (the other two also deal with galaxies. Makes sense to me). We had long thought that the ideal proposal for further observations of some of the rare objects identified in Galaxy Zoo ran along the lines of “Our volunteers have found all these weird galaxies. We need a closer look”. That was essentially what the gap-filler project offered.

We estimated that we could identify 1100 particularly interesting galaxies (where short-exposure Hubble images would teach us something we could foresee) from Galaxy Zoo and Radio Galaxy Zoo.  We were allocated 300 by STScI, so some decisions had to be made. A key feature of our project was the wide range of galaxy science goals it could address, so we wanted to keep a broad mix of object types. Some types were rare and had fewer than 10 examples even from Galaxy Zoo, so we started by keeping those. When there were many to choose from, we did what Galaxy Zoo history (and STScI reviewers) suggested – asked for people to vote on which merging galaxies, overlapping galaxies, and so on should go into the final list. This happened in parallel for Galaxy Zoo and Radio Galaxy Zoo objects (the latter largely managed by the late Jean Tate, not the last time we are sadly missing Jean’s contributions as one of the most assiduous volunteers). Even being on that observing list was no guarantee – gap-filler observations are selected more or less at random, taking whichever one (from whichever project’s list) fits in a gap in time and location in the sky. The STScI pilot project suggested that we could eventually expect close to half to be observed; we are now quite close to that, with 146 observations of 299 (one became unworkable due to a change in how guide stars are selected by Hubble). These include a fascinating range of galaxies. From Galaxy Zoo, the list includes Green Pea starburst galaxies,  blue elliptical and red spiral galaxies, ongoing mergers, backlit spiral galaxies, galaxies with unusual central bars or rings, galaxy mergers with evidence for the spiral disks surviving the merger or reappearing shortly thereafter, and even a few gravitational lenses. From Radio Galaxy Zoo, we selected sets of emission-line galaxies (“RGZ Green”) and possibly spiral host galaxies of double radio sources (SDRAGNs, in the jargon, and so rare that we’ve more than doubled the known set already). Both kinds of RGZ selection  were largely managed by Jean Tate, who we are missing once again. By now, of 300 possible objects,  146 have been successfully observed. One can no longer be observed due to changes in Hubble’s guide-star requirements, and two failed for onboard technical reasons  (it was during one of those, a few months ago, that a computer failure sent the telescope into “safe mode”; I have been assured that it was not our fault).

Hubble images from Zoo Gems program.
Some favorite Zoo Gems images of Galaxy Zoo objects – a merger with surrounding spiral pattern, overlapping galaxy system with backlit dust, wheel-within-a-wheel bar and ring, two mergers, and a 3-armed spiral.

Zoo Gems images show that every blue elliptical galaxy observed shows a tightly wound spiral pattern near the core, so small that it was blurred together in the Sloan Survey images used by Galaxy Zoo, and broadly fitting with the idea that these galaxies result from at least minor mergers bringing gas and dust into a formerly quiet elliptical system.

There is much more to come as harvesting the knowledge from these data continues. Already, a project led by Leonardo Clarke  at the University of Minnesota  used Zoo Gems images to demonstrate that Green Peas are embedded in redder surroundings, possibly the older stars in the galaxies that host these starbursts.  Beyond these, these data can be used to examine the histories of poststarburst galaxies, dynamics and star-formation properties of 3-armed spirals, and nuclear disks and bars – some of these show galaxies-within-galaxies patterns where the central region nearly echoes the structure of the whole galaxy.

While going through some of the Zoo Gems images to see which should go in various montages in this paper, I considered the multilayer overlapping galaxy system including UGC 12281. It didn’t go into the paper, but the visual sense of deep space in this image is so profound that it became the 2nd most-retweeted thing I’ve sent out in more than 10 years.

From a Hubble Zoo Gems image: overlapping layers of galaxies behind the nearby edge-on spiral UGC 12281. Galaxies beyond galaxies, stretching away through space and time.

In presenting these data, we wanted to make the case for the value of wide-ranging, even short, programs such as this. These gap-filler projects are continuing with Hubble, until STScI starts to have trouble filling the gaps and needs to call for more projects. Premature as it seems, I can’t help musing that someone may eventually work out a low-impact way for the James Webb Space Telescope to make brief stopovers as it slews between long-exposure targets – we have suggestions…

Data from the Zoo Gems project (like the other gap-filler programs, Julianne Dalcanton’s program on Arp peculiar galaxies and the one on SWIFT active galaxies led by Aaron Barth) are immediately public, accessible in the  MAST archive under HST program number 15445 (the others are 15444 and 15446). Claude Cornen maintains image galleries for the Zoo Gems, Arp and SWIFT projects in Zoo Gems Talk. Our thanks go to everyone who helped draw attention to these galaxies, or voted in the Zoo Gems object selection.