Eight Years & the 8th Paper: Green Peas – Living Fossils of Galaxy Evolution

As we approach the 8th anniversary of the Galaxy Zoo project, it is a great opportunity to look back at one of the most fascinating discoveries of citizen science in Galaxy Zoo – the “Green Pea” galaxies. Volunteers on the forum first noted these galaxies due to their peculiar bright green color and small size. Their discovery was published in our 8th paper: ‘Galaxy Zoo Green Peas: discovery of a class of compact extremely star-forming galaxies’ and is noted on the blog here. But the story doesn’t end with their discovery.

Top Row: Green Peas in the original imaging are compact & bright green.
Bottom Row: Green Pea galaxies as imaged by the Hubble Space Telescope show patches of starformation.
In the years since the publication of their discovery paper by the Galaxy Zoo Science Team, the Green Peas are beginning to fulfill their promise as a living fossil of galaxy evolution. Because they aren’t too far away, they provide a unique local laboratory in which we can investigate processes key to the formation and evolution of galaxies in the early universe. They are living ‘fossils,’ undergoing extraordinary, intense starbursts unlike any other galaxies known in the local universe. Their color is due to a large amount of emission in an oxygen line [OIII]/5007A that made their appearance green in the images.
Follow-up studies of the Green Peas have looked in great detail at their abundances of various elements, something that cannot be done in their high redshift analogs. The results of these studies show that they have energetic outflows of gas and lower oxygen abundances than other typical local galaxies with similar masses. They also suggest what might be responsible for ionizing the gas in the galaxies and producing those bright emission lines (e.g., Wolf-Rayet stars). Their clumpy morphologies (or shapes) have been confirmed and suggest that star formation in the peas occurs in several separate knots throughout the galaxy. Their radio emission implies they have strong magnetic fields, larger than that of the Milky Way. All of these results paint a picture of galaxies very similar to those that formed in the early Universe.

This image shows radio emission detected from a combination (stack) of 32 different Green Pea Galaxies.
Results from studies of these galaxies can provide challenges to commonly accepted models. For example, the strong magnetic fields challenge models that suggest magnetic fields grow slowly over time and observations of the variation in Lyman alpha emission line profiles and strengths challenge models of the dependence of the emission line shape on gas properties in the galaxy. The Green Peas have held up their promise of lending new insights into galaxy evolution by characterizing an active mode of star formation, which contrasts with the typical more passive evolution dominating the local galaxy population. Studies of the Peas have suggested that a galaxy’s evolutionary pathway may depend on stochastic initial conditions, leading insights into our understandings of how galaxies throughout the Universe form.
Radio Peas
Working with scientists in India, we have been awarded time on the Giant Metrewave Radio Telescope (GMRT) to study the radio properties of the Green Pea galaxies discovered by Galaxy Zoo users. We hope to use this telescope to detect the first signs of radio emission from the Peas, establishing them as a new class of radio sources.
Why do we want to search for radio signals from the Peas? The radio emission comes from remnant supernovae which can accelerate relativistic electrons that emit synchrotron radiation. So when we are detecting star forming galaxies in radio emission, we are finding signatures from these supernovae, which tell us about the stars that live (or lived) in the galaxy. Therefore, using the radio emission we can trace recent star formation activity in the galaxy.
We are particularly interested in these Green Peas, because they are the closest analogues to a class of vigorously star forming galaxies found in the early universe (known as Lyman Break Galaxies). These galaxies behaved very differently from star forming galaxies in the present day universe, and can help us to understand how galaxies formed in the early universe. Because Lyman Break Galaxies are so far away, Astronomers have not yet been able to detect radio emission from any of these galaxies individually. In contrast, the Peas are much closer and we have a good chance of being able to directly detect them in radio emission. Detecting this radio emission, and determining whether or not the radio emission from the Peas is like that in nearby star forming galaxies will help us to understand the nature of star formation in the youngest galaxies.
Galaxy Zoo gets highlighted by the 2010 Decadal Survey
Every decade, the US astronomy community gets its leaders together to write up a report on the state of the field and to recommend and rank major projects that should be supported by the government over the next decade. It’s a blue print, a wish list and often also a sober exercise in what to fund (a little) and what to cut (a lot). The current Decadal Survey was finally released by the US National Academies last Friday and every astronomer is poring over it to see if their project or telescope is ranked highly.
Galaxy Zoo isn’t competing for hundreds of millions of dollars in funding to launch a space observatory, but it did get not just one but two mentions in the 2010 Decadal Survey, one in the text and a figure. For those of you who are keen to read the whole thing for themselves, you can get the report at the National Academies website here (you have to click on download and give them your details to get the free PDF download). Here on the blog we only show you the highlights, i.e. the Galaxy Zoo mentions. From the text in the section on “Benefits of Astronomy to the Nation” where they discuss how “Astronomy Engages the Public in Science”:
Astronomy on television has come a long way since the 1980 PBS premier of Carl Sagan’s ground-breaking multipart documentary Cosmos. Many cable channels offer copious programming on a large variety of astronomical topics, and the big three networks occasionally offer specials on the universe too. Another barometer of the public’s cosmic curiosity comes from the popularity of IMAX-format films on space science, and the number of big-budget Hollywood movies that derive their plotlines directly or indirectly from space themes (including five of the top ten grossing movies of all time in America). The internet plays a pervasive role for public astronomy, attracting world-wide audiences on websites such as Galaxy Zoo (www.galaxyzoo.org, last accessed July 6, 2010) and on others that feature astronomical events, such as NASA missions. Astronomy applications are available for most mobile devices. Social networking technology even plays a role, e.g., tweets from the Spitzer NASA IPAC (http://twitter.com/cool_cosmos, last accessed July 6, 2010).
They also have a lovely figure, which has a small blooper in it (see if you can spot it!). Word is that this is going to be corrected in the final version:
Thank you all for making Galaxy Zoo such a success!