Radio Galaxy Zoo: what radio lobe shapes tell us about the mutual impact of jets and intergalactic gas

The following blogpost is from Stas Shabala about the Radio Galaxy Zoo paper led by his student, Payton Rodman, exploring the origin of asymmetries observed in a sample of Radio Galaxy Zoo radio galaxies.

***********

Another Radio Galaxy Zoo paper has just been accepted for publication. “Radio Galaxy Zoo: Observational evidence for environment as the cause of radio source asymmetry” will shortly appear in Monthly Notices of the Royal Astronomical Society, and is already available on the preprint server (https://arxiv.org/abs/1811.03726). This paper, led by University of Tasmania undergraduate student Payton Rodman, looks at the properties of lobes in powerful radio galaxies. These lobes are inflated by a pair of jets, emerging in opposite directions from the accretion disk of the black hole at the centre of their host galaxy. Astronomers have known for a while that how big, bright or wide the radio lobes are depends on the properties of the intergalactic gas into which these lobes expand. Small, slow-growing lobes are usually found in galaxy clusters, while their large, rapidly expanding cousins tend to stay away from such dense environments. Radio lobes move about and heat intergalactic gas, and in this way they are thought to be responsible for regulating the formation of stars (by staving off the gravitational collapse of cold gas) in massive galaxies over the last eight billion years. Because of this, understanding how jets and lobes interact with their surroundings is important for understanding the history of the Universe. What complicates matters is that the mechanisms responsible for feeding the black hole and generating jets are also different in these two environments. So does nature or nurture determine what the lobes look like?

PLUTO_asymmSims_M25-Q38-R1_theta30

Still snapshot of hydrodynamic simulation of asymmetrical radio jets by Patrick Yates from the University of Tasmania. Check out the movie clip here

We decided to use the fact that all radio galaxies start out with two intrinsically identical jets propagating in opposite directions. If the two resultant lobes look different, this could only be due to the interaction with the surrounding gas – in other words, nurture. To test the nurture hypothesis, we used the first tranche of Radio Galaxy Zoo classifications. We selected all sources classified by citizen scientists to contain two clear radio lobes, and subjected this sample to a number of rigorous cuts on brightness, shape, redshift, and availability of environment information. Hot intergalactic gas is usually traced by X-ray observations, but these are unavailable for the majority of the sample. Instead, we used the clustering of optical galaxies from the Sloan Digital Sky Survey, which should be a good proxy for the underlying gas distribution. Then, for each radio galaxy, we compared the properties of the two radio lobes to how many galaxies were found near each of the lobes. We found a clear anti-correlation between the length of the radio lobe, and the number of nearby galaxies – in other words, shorter lobes have more galaxies surrounding them. These results were in excellent agreement with quantitative predictions from models (such as this hydrodynamic simulation made on the University of Tasmania’s supercomputer by PhD student Patrick Yates), which show that it is more difficult for lobes to expand into dense environments. The relationship between the luminosity of the lobes and galaxy clustering was much less clear, again consistent with models which predict a highly non-linear luminosity evolution as the lobes grow.

The excellent agreement between models and observations suggests that it is nurture, not nature, which determines lobe properties. It also opens up a new way of studying radio galaxy environments: though sensitive observations of optical galaxy clustering. With help from Zooites, we hope to expand this work to a much larger Radio Galaxy Zoo sample, which would allow us to probe the finer aspects of jet – environment interaction. Further afield, the ongoing GAMA Legacy ATCA Southern Survey (GLASS) project on the Australia Telescope Compact Array, as well as the Australian Square Kilometre Array Pathfinder EMU survey, will use this method to study the physics of black hole jets and the impact they have on their surroundings in a younger Universe.

Radio Galaxy Zoo’s ClaRAN

On the 31 October 2018, Radio Galaxy Zoo published its first end-to-end machine learning system for “Classifying Radio sources Automatically using Neural networks” (ClaRAN). This paper is led by ClaRAN’s developer, Chen Wu, a data scientist at the International Centre for Radio Astronomy Research at the University of Western Australia (ICRAR/UWA), who repurposed the FAST-rCNN algorithm (used by Microsoft and Facebook) to classify radio galaxies. ClaRAN was trained on radio galaxies classified by Radio Galaxy Zoo and so recognises some of the most common radio morphologies that have been classified.

The purpose of ClaRAN is to reduce the number of radio sources that require human visual classification so that future Radio Galaxy Zoo projects will have fewer “boring” sources, thereby increasing the chances of real discoveries by citizen scientists. ClaRAN (and its future cousins) are crucial for future surveys such as the EMU survey which is expected to detect ~70 million radio sources (using the Australian Square Kilometre Array Pathfinder telescope). While Radio Galaxy Zoo has made visual source classifications much more efficient, we will still need to reduce the total survey sample size to a sample for visual inspection that is less than 1% of the 70 million sources.

How does ClaRAN work? ClaRAN inspects both the radio and coordinate-matched infrared overlay in the same fashion as RGZ Zooites, and then determines the radio source component associations in a similar fashion to the RGZ Data Release 1 (DR1) catalogue. As ClaRAN is still in its prototype stage (–analogous to the capabilities of a toddler), it only understands 3 main classes of radio morphologies — sources which have 1-, 2- or 3- separate radio components. ClaRAN was trained to understand these three different radio morphologies through seeing examples of all three classes from the
RGZ DR1 catalogue. The animated gif in the figure below (from the ICRAR press release) describes how ClaRAN “sees” the example radio galaxy.

ClaRAN-eye-view-labelled
As we look towards the future, we look forward to teaching ClaRAN some of
the more complex and exotic radio galaxy structures. For that to happen, we need to assemble much larger samples of more complex radio morphology  classifications. With your support of Radio Galaxy Zoo, I am sure that we will get there.
Fun fact: did you know that some of the more obscure bugs in the RGZ DR1 catalogue processing was actually found through training ClaRAN? This is because ClaRAN is a good learner and will learn all the small details that we didn’t initially notice.  We only discovered these bugs through some of the funny answers that we got out of some of the early testing of ClaRAN.

Thank you very much again to all our Radio Galaxy Zooites for your support. More information on the ICRAR press release for ClaRAN can be found via this link: https://www.icrar.org/claran/

 

 

 

 

Galaxy Zoo 3D: Bar Drawing All done, but we still have spirals…

Just a quick post to say thank you for your contributions to Galaxy Zoo: 3D in the last couple of weeks. I’m delighted to say that the bar drawing task is now completed. We still have a lot of spirals to draw though, so if you are ready for a challenge come join us in drawing these beautiful structures. Remember we collect 15 answers per galaxy, and use clever algorithms to combine them into a really reliable answer – so do your best, but don’t get too worried if your hand slips slightly! 🙂

GZ_3D Spirals.png

Finding Bars in Galaxy Zoo: 3D

I’m posting this on behalf of Amelia Frasier-McKelvie, a postdoc at the University of Nottingham, UK.

Hi – I’m Amelia, and I’m a postdoctoral researcher at the University of Nottingham. I work on galaxy evolution using the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey (and yes, I know it’s a contrived acronym!) MaNGA aims to observe 10,000 galaxies using integral field spectroscopy, which means instead of just obtaining one spectrum of a galaxy, we take several hundred at all different points across a galaxy. From this, we can infer interesting spatial information on galaxy properties. For example, we can see the regions in which star formation is occurring, or compare the ages of the stars in the bulge regions of a galaxy to the outer disk. By breaking down a galaxy into its components (such as bulge, disk, spiral arms, and bar) we can discover more about how the galaxy formed, and how it has led its life so far.

mangagalaxy1

A MaNGA galaxy (image from SDSS imaging) with the area where spectra will be collected marked by the purple hexagon. Note the bar which is almost horizontal in this image.

 I’m really interested in how bars affect their host galaxies. In particular, I’m looking for observational evidence that bars are involved in the quenching of star formation within a galaxy. This phenomenon is known as secular evolution/quenching. The one thing a galaxy needs to form stars is a reservoir of cool hydrogen gas. It’s been postulated that a bar can transfer matter (such as gas) radially inwards through a galaxy’s disk and into its central regions. If this is the case, then maybe it takes this gas required for star formation and funnels it towards the galactic centre, starving the disk, and ceasing star formation. Simultaneously, this gas that is funnelled into the central regions could either induce a final starburst, using up all gas, or feed an active galactic nucleus (AGN), which can heat the gas to a point where it cannot collapse to form stars.

 If we wanted to catch a bar in the act of quenching a galaxy, we could look for tell-tale signs of this funnelling action, namely a difference in the age and chemical composition of the stellar populations in the bar region of a galaxy when compared to the disk.

mangagalaxy2

Another MaNGA galaxy with a strong bar.

 This is where Galaxy Zoo 3D comes in — I need to know where the bars actually lie in their host galaxies! Galaxy Zoo 3D citizen scientists mark out the bar (and spiral arm) regions of the MaNGA galaxy sample, which I can apply to our data cubes and extract spectra belonging to the galactic bar and disk regions. I can then analyse the bar and disk spectra separately and compare their properties. I’m interested in the global properties of a large sample of galaxies, so I need as many bar and disk region classifications as possible!

GZ3D masks

Masks made by GZ:3D showing the bar and disk (or not bar) regions of the above galaxy.

 If I can find observational evidence that bars are helping to quench galaxies this will confirm the idea that internal secular evolutionary processes are important in galaxy evolution.

This will prove that along with external factors, internal structures such as bars are extremely important in determining a galaxy’s fate!

 

We hope you enjoyed hearing about how the masks made in Galaxy Zoo: 3D are being used. There’s still plenty of bars and lots and lots of spirals to mark in the project, so please join in if you’d like to help us complete our sample and help Amelia and others (including me!) with their research. 

Galaxy Zoo Messaging Experiment – Results

Some of you may remember a while back we posted a blog announcing that we would be testing a new messaging system on Galaxy Zoo. Some of you may even have seen these messages while classifying on the site! This test was also part of a study of how we could use messaging to increase engagement on the project. Working with researchers from Ben Gurion University and Microsoft Research we delivered messages to volunteers at key times during their participation on Galaxy Zoo and observed how these messages affected their engagement. This research was based on previous work we had done that demonstrated that sending similar messages in emails could increase the likelihood of volunteers returning and engaging more with the project.

This screenshot shows an example of how the messages were shown in the Galaxy Zoo classification interface.

The volunteers were split into three main cohorts; One group who were delivered the messages at random intervals, one group who were delivered the messages at what were predicted to be optimal times, and a final control group who received no messages. This study has led to two peer-reviewed publications and the results show that optimal timing of an intervention message can significantly increase the engagement of volunteers on Galaxy Zoo.

This plot shows how the messages sent at the predicted optimal times were significantly more effective at increasing engagement than those sent at random.

 

 

These early results are intriguing, and we’d like to do more tests to see if it’s something we can use more broadly across Zooniverse projects. The same machinery might also be used by Zooniverse teams to send messages to volunteers – either in a group or individually – as they participate in their projects. We’ll keep you informed on the blog.

To read about the study and its finding in more detail please see the following papers:
http://erichorvitz.com/engagement_intervention.pdf
http://erichorvitz.com/optimizing-interventions-offline.pdf

For a discussion regarding the ethics of this study, please read this Zooniverse Talk thread https://www.zooniverse.org/talk/14/675633.

Galaxy Builder Results

For the past few years, a new Galaxy Zoo project has been under development. This project allows the creation of models of galaxies inside the Zooniverse website (although in a slightly experimental fashion). Many of you helped trial this project in December of 2017, and some have classified since it was quietly launched in late April. I’d like to take this opportunity to share with you some of the early results we have obtained from your classifications!

From the beta

260 of you helped beta test and debug the project in our beta, providing invaluable feedback (most of which we hope we addressed!) and submitting over one thousand test classifications of our small test sample. One of the images in this sample was the SDSS r-band image of the galaxy below, catchily known as SDSS J104238.12+235706.8.

In this post we’ll look specifically at the spiral arms drawn on this galaxy, and how we can recover information about the shape of the spirals from your drawn arms. If we plot every spiral arm drawn on the galaxy, two distinct spiral appear:

There are a number of classifications which have either crossed the center of the galaxy, linking the two arms with one line, or which attempt to enclose the spiral (as in the GZ:3D project) rather than tracing along the center line. This confusion arose from the short tutorial and confusing help text present in the beta, which was flagged by our testers (thank you!).

Grouping Lines

We can make use of unsupervised machine learning techniques to cluster together these drawn arms, and extract points corresponding to each arm (while throwing away some lines which didn’t fit into our groups).

Cleaning up

Taking one arm as an example, we identify points which could be considered outliers, and remove them to improve our later fit (using another unsupervised machine learning technique called Local Outlier Factor). In the image below, red dots correspond to points identified as outliers, and the blue contours can be seen as a probability map, with points in regions of darker blue being more likely to be an outlier.

Fitting a spiral

Brilliant – we now have a load of (unordered) points which roughly resemble the spiral arm of our galaxy! We’ll fit a smooth line to obtain a “best guess” of the galaxy’s spiral properties, the result of which can be seen below:

 

What we’ve discovered from the beta trial is that we need at least 20 attempts at drawing spirals on a galaxy to get reliable answers, so we’re keen to get more people trying to build galaxies on Galaxy Builder.

If you’d like to help please join us at https://www.zooniverse.org/projects/tingard/galaxy-builder. If that’s not your thing we still need classifications on Galaxy Zoo: 3D, and the classic Galaxy Zoo is still live with all new images from the DECaLS survey.

A Conference on Galactic Rings

A few of the Galaxy Zoo science team were in Alabama last week for a conference all about Galactic Rings. Results making use of your classifications were much in evidence, so we’ve collected some of the hi-lights for you in this blog post.
 The conference was timed to recognise the career of Prof. Ron Buta – one of the undisputed world experts in galaxy morphology (and especially galaxy rings) and someone who was personally trained by Gerard de Vaucouleurs (of the De Vaucouleur classification system) in classifying galaxies. One of the cool things about the meeting was the presence of an original hand drawn version (by De Vaucouleurs himself) of the classification scheme for Sb galaxies.

Paul Eskridge and Karen Masters help Ron Buta unwrap the De Vaucouleurs classification diagram. Photo credit: Bill Keel.

One of the first mentions of Galaxy Zoo classifications was by Ron himself, in the introduction to rings in galaxies. Of your classifications his verdict was “couldn’t have done it better myself”. A real endorsement from such an expert.

Ron Buta by the original diagram of the De Vaucouleur Classification Scheme for Sb galaxies. Gerard de Vaucouleur hand drew each galaxy in the diagram in pencil while clouded out on observing runs. Many of the structures discussed in this conference are clearly shown in this diagram. Photo credit: Bill Keel

 

There are various kind of rings we see in galaxies – nuclear, inner, outer, pseudo rings, collisional, accretion, maybe even disk instability at high redshift. We discussed how all of these are thought to form, and enjoyed a parade of beautiful images of ring galaxies.

A selection of ring galaxies. From left to ring: Hoag’s Object (an accretion ring), The Cartwheel Galaxy (a collisional ring) and NGC 3081 showing an inner and nuclear resonance ring (it also has an outer ring, not shown in this image). Image credits: Hubble Space Telescope for all three (composition by Karen Masters).

 While the conference was all about galactic rings, really all internal structures seen in spiral or disc galaxies were discussed – and the connections between them. It was a great mix of observers like ourselves, and theorists, working on state of the art models of galaxy morphology.
 Results from your classifications of Illustris galaxies were mentioned several times (Dickinson et al. 2018), revealing that the simulation, while doing OK for large galaxies, cannot reproduce the morphologies we see in the real Universe for lower mass galaxies – at least not yet. This was covered in the blog post: “Classifying Galaxies from Another Universe
 The results from both Galaxy Zoo: Hubble, and Galaxy Zoo: CANDELS on how the bar fraction changes in disc galaxies as we look back across cosmic time came up several times. We’ve covered those on this blog here and here. Certain kinds of galactic rings (resonant rings) are thought to be created by bars, so understanding the evolution of bars in galaxies is important for understanding rings. What was really nice to see was this result presented with no mention that it came from Galaxy Zoo. That might sound odd at first, but we take it as recognition that Galaxy Zoo morphologies are now an accepted part of astronomical data and practice – used by astronomers for the excellent data they are – not because of (or in spite of) being created by citizen scientists, but because they provide useful information about how galaxies work.

 Spiral arms and how they form were a big discussion at the conference. Bill Keel (who you may now better for his work on overlapping galaxies found in the forum), presented work by the most recent Galaxy Zoo PhD – Dr. Ross Hart (who unfortunately could not make the meeting) on Galaxy Zoo constraints on spirals. This included results from a small side project Spiral Spotter. What is clear from this result (and many others presented at the meeting) on spirals – we really don’t understand which spiral arm formation mechanisms are the most important in galaxies, or how to tell in an individual galaxy which mechanism makes its spirals. There’s a dizzying array of possibilities – so lots of results to test with morphology. Overlapping systems did still get a mention – presented by Benne Holwerda.

Bill Keel presenting Galaxy Zoo results on spiral arms. Credit: Karen Masters

One especially strong and mostly new thing at the meeting – using the history of star formation in a galaxy (as unravelled from mostly resolved spectroscopy) to add information to dynamical histories. For example, if dynamics says nuclear rings are made only from gas funneled in along a bar, the ages of the oldest stars associated with that ring tell you that the bar was here at least that long ago. In one example, MUSE data suggest that NGC 4371 has a bar which formed about 10 Gyr ago, and this was compared to the highest-redshift bars found in Galaxy Zoo: CANDELS.

NGC 4371 and it’s clear bar (Credit: SDSS)

Galaxy Zoo has a link to the MaNGA survey (which covers many more galaxies than MUSE, but at much lower spatial resolution). Some of you may have contributed to Galaxy Zoo: 3D which is asking you to help us identify the locations of internal structures in galaxies observed by MaNGA. We saw some early results from this from Amelia Fraser-McKelvie, and Tom Peterken (both at Nottingham University), which we’ll be covering on the blog soon in more detail. Thanks for your classifications so far on GZ:3D – we could really use a lot more help on wrapping up that project if you have some time!
We heard from Bill’s PhD student Colin Hancock about interested 3-armed spirals. What’s curious about some of those is that they don’t seem to mind having strong bars. We’re all a bit confused how that’s possible, so stay tuned.
 Karen Masters gave one of the last talks of the conference, with an overview of Galaxy Zoo old and new. She wrapped up with live demos of both Galaxy Zoo: 3D and Galaxy Builder, both of which could use more expert (citizen, or professional scientist) classifications.

Karen Masters starting a talk with a review of 11 years of the Galaxy Zoo project. Credit: Bill Keel

Much was made at the conference that the last astronomy conference hosted in the same location had been in 1995, and many of the attendees present then were also present this year (although a Twitter poll established that most of the Twitter active attendees this time were still at school in 1995). Below a few attendees inspect the conference photo from 1995.
2018-05-31 08.27.14

A group of experts classify a photo of astronomers from 1995 (in the same location). Credit: Bill Keel.

It is possible most of the talks will be made available online eventually – we’ll keep you posted if that happens.

Blog post by Karen Masters, with significant input (and photos) from Bill Keel.

New Galaxies, New Galaxy Zoo

For the last few weeks, the main Galaxy Zoo has been waiting for new images, but we’re now back with a new site – and new galaxies.

Galaxies first. There are a few extra images from the Sloan Digital Sky Survey to work through, but we’ve also lined up images from the latest Dark Energy Camera Legacy Survey (DECaLS) data release. We’ve looked at DeCALS data before; its images come from a four meter telescope, larger than any we’ve used for Galaxy Zoo before, and so we get to see fainter details and finer structures than would otherwise be possible. The galaxies in the site now have never been inspected before, so do get clicking – who knows what might be there to find?

You’ll also notice the site is different. We’ve moved Galaxy Zoo over to Panoptes, the system that powers almost all of the Zooniverse projects. Moving to this software makes it much, much easier for us to upload new images, and will mean that Galaxy Zoo will continue to be supported for a long time to come. We don’t, as a team, have any funding ourselves for development, so it’s important we use the up-to-date software maintained by Zooniverse. The old site will continue to be accessible at zoo4.galaxyzoo.org.

There are a few downsides. It will take us a little while to translate the new site – those who translated the old one should have received an email but let us know if not. Most importantly, it means a new instance of Talk, the software that hosts discussion and conversation. Our wonderful moderators have been moving important threads across, and the old site will continue to be available at talk.galaxyzoo.org. We’re also still working on the best way to color our new galaxies. For the first few days, you may notice some galaxies with unusually bright colors. These are rare duplicates created using a different color palette – let us know what you think on the new Talk!

With new galaxies and a stable software platform, Galaxy Zoo is in good shape to carry on producing excellent science. Do come and explore!

Gems of the Galaxy Zoos – coming soon to a space telescope near your planet!

It’s away! The final observation plan for the Gems of the Galaxy Zoos Hubble program was submitted earlier this week (24 hours before our deadline, I want you all to know).

We collected votes for over 2 weeks, separately for Galaxy Zoo and Radio Galaxy Zoo objects since they needed distinct image layouts. About 18,000 votes were cast. The Talk interfaces turned out to be very useful for immediate practical matters – some users seeing images twice, some cases of the wrong  coordinates being used for images that had been uploaded and needed to be replaced, and finding duplicates both within the candidates and versus older Hubble observations. (A major “thank you” to the volunteers who contributed in these ways). I was strongly impressed at the level of discussions on the Talk sites that went into some of these decisions.

Read More…

Gems of the Galaxy Zoos: help pick Radio Galaxy Zoo Gems!

Help vote for Radio Galaxy Zoo Gems!

At the Galaxy Zoos (both at Galaxy Zoo & Radio Galaxy Zoo), we are fizzling with excitement as we prepare for observations using the Advanced Camera for Surveys instrument on board the Hubble Space Telescope. These new Hubble maps will have greater resolution than those that we have from the Sloan Digital Sky Server.

As mentioned by Bill’s blogpost, we have been allocated fewer observing slots than our full list of candidates. Therefore, we invite all of you to help shape the observing priorities of our current target list. You will help determine which host galaxies would gain the most from these Hubble observations (and thus have highest priorities on the target list).

The main science targets specific to these Hubble observations are the host galaxies of Green Double Radio-lobed Active Galactic Nuclei (Green DRAGN — pronounced Green Dragon) and Spiral Double
Radio-lobed Active Galactic Nuclei (S-DRAGN).

Figure 1: Example of a Green DRAGN that is also a Hybrid Morphology Radio Source (HyMoRS) found by Radio Galaxy Zoo (Kapinska, Terentev et al 2017)

Green DRAGN — The prominent green appearance in these DRAGN host galaxies come from the strong [OIII] emission line that dominate the emission in the Sloan r-band. Therefore, these galaxies appear very green in a Sloan 3-colour (g,r,i)  image due the lack of equivalently-strong emission in the Sloan g– and i– bands (the blue- and red- filters, respectively).  The Green Pea galaxies (Cardamone et al 2009) from the original Galaxy Zoo project are a class of green galaxies that appear to be dominated
by star formation. On the other hand, the Green Bean galaxies (Schirmer et al 2013) are thought to consists of quasar light echoes (eg Galaxy Zoo’s Hanny’s Voorwerp).  However, the original Green Bean population show little to no emission at radio wavelengths.

In Radio Galaxy Zoo, we have found a population of Green Bean-like galaxies which host bright radio lobes. Therefore, what sort of feedback are galaxies getting from these “radio-active” Green DRAGNs and how do they relate to the other green galaxies and our understanding of galaxy evolution? Figure 1 shows an example of a Green DRAGN that also happened to be a Hybrid Morphology Radio Galaxy
found by Radio Galaxy Zoo and published by team scientist Anna Kapinska in collaboration with citizen scientist Ivan Terentev (see blogpost on their paper).

Figure 2: An example S-DRAGN that is radio galaxy 0313-192 where VLA observations have been overlayed in red over an HST ACS image. (More details can be found in Bill’s paper: Keel et al 2006)

Spiral DRAGN — Typically, radio galaxies with big radio jets and lobes are hosted by early-type galaxies. Spiral galaxies are often thought to not be “mature” or massive enough to host giant radio lobes.  However, a few S-DRAGNs have been found in the past by our very own Bill Keel (Keel et al 2006, see Figure 2) and Minnie Mao (Mao et al 2015).  To shed light on this rare phenomena,
we seek your help through Radio Galaxy Zoo and this observing programme to assemble a more statistically significant number of this rare class of objects. Figure 2 shows a combined HST and VLA map of the S-DRAGN
published by Bill in 2006.

We have to finish this priority selection by the 16th February 2018. So, please help vote now by clicking hereWe have uploaded the targets in batches of 24 and so please click on all the batches for a view of the full target list.  A handy tip for inspecting these images is to ensure that your screen brightness is adjusted to its maximum because many of the host galaxy features can be very faint. 

We thank Radio Galaxy Zooites, Jean and Victor, for their immense help with assembling the priority selection project interface.  You can track what Hubble is observing by proceding to the Hubble archive link or the Hubble Legacy Archive interface here.