Archive by Author | Tobias Géron

Stronger bars help shut down star formation

Hi everyone!

I’m Tobias Géron, a PhD student at Oxford. I have been using the classifications of the Galaxy Zoo DECaLS (GZD) project to study differences between weak and strong bars in the context of galaxy evolution. We have made significant amount of progress and I was able to present some results a couple of weeks ago at a (virtual) conference in the form of a poster, which I would love to share with you here as well.

To summarise: I have been using the classifications from GZD to identify many weakly and strongly barred galaxies. Some example galaxies can be found in the first figure on the poster. As the name already implies, strong bars tend to be longer and more obvious than weak bars. But what exactly does this mean for the galaxy in which they appear?

One of the major properties of a galaxies is whether it is still forming stars. Interestingly, in Figure 2 we observe that strong bars appear much more frequently in galaxies that are not forming stars (called “quiescent galaxies”). This is not observed for the weak bars. This suggests one of two things: either the strong bar helps to shut down star formation in galaxies or it is easier to form a strong bar in a quiescent galaxy.

In an attempt to answer this chicken or egg problem, we turn to Figure 3. Here, we show that the rate of star formation in the centre of the galaxy is highest for the strongly barred galaxies that are still star forming. This suggests that those galaxies will empty their gas reservoir quicker, which is needed to make stars, and are on a fast-track to quiescence. 

I’m also incredibly happy to say that we’ve written a paper on this as well, which has recently been accepted for publication! You can currently find it here. Apart from the results described above, we also delve more deeply into whether weak and strong bars are fundamentally different physical phenomena. Feel free to check it out if you’re interested!

It’s amazing too see all this coming to fruition, but it couldn’t have been possible without the amazing efforts of our citizen scientists, so I want to thank every single volunteer for all their time and dedication. We have mentioned this in the paper too, but your efforts are individually acknowledged here. Thank you!

Cheers,

Tobias

Strong and weak bars in Galaxy Zoo

Good morning everyone,

My name is Tobias and I’m a new PhD student here at Oxford. I use the classifications everyone made in Galaxy Zoo to attempt to understand how galaxies evolve. Right now, I’m especially interested how bars affect galaxy evolution.

As some of you know, Galaxy Zoo currently asks to differentiate between so-called ‘strong’ or ‘weak’ bars. Below you can find some neat examples of both classes of galaxies that were identified using your classifications. It seems that the difference between strong and weak bars is some sort of combination between the length, width and brightness of the bar. 

Examples of strongly barred (top row) and weakly barred (bottom row) galaxies.

The relationship between bars and galaxy evolution has been studied before by members of the Galaxy Zoo team, but the previous incarnation of Galaxy Zoo only allowed binary answers to the bar question: either there was a bar or not. The interesting bit, however, is to see whether strong and weak bars have different effects.

In fact, we have exciting preliminary data that suggests both types do behave differently in the context of galaxy evolution! When a galaxy evolves and moves from the ‘blue cloud’ to the ‘red sequence’ in the colour-magnitude diagram, its morphology and properties change (e.g.: its star formation rate decreases). This process is called ‘galaxy quenching’. With the new Galaxy Zoo data and the classifications that everyone involved made, we saw that galaxies with weak bars are found in both the blue cloud and the red sequence, whereas the strongly barred galaxies are very much clustered in the red sequence, as you can see below. In more detail, strongly barred galaxies only make up ~5% of the blue cloud, while making up ~16% of the red sequence. To contrast this, weakly barred galaxies have a much more modest increase, populating ~17% and ~21% of the blue cloud and red sequence, respectively.

Contour plot of the colour-magnitude diagram for all the galaxies in Galaxy Zoo. Overlaid on top are the strongly barred galaxies (in green) and the weakly barred galaxies (in orange). The dotted line (taken from Masters et al. (2010)) defines ‘the blue edge of the red sequence’ and effectively divides the sample in two populations: the blue cloud and red sequence. One can clearly see that the strong bars are mainly above the dotted line.

This finding hints at a fundamental difference between the two types of bars, but in order to do real science we need to interpret the clustering of the strong bars correctly. Do strong bars cause the galaxy to quench and move up the red sequence or can a strong bar only form if the galaxy is already sufficiently quenched – a chicken or egg question on the scale of galaxies.

Before I end this post, I want to emphasise that this research is only made possible because of many volunteers, like yourself, that help classify galaxies and we are very grateful for your time and effort. However, this is only the start and a lot of work still needs to be done, so keep on classifying!

I hope to report on interesting new developments soon.

Cheers,
Tobias