Radio Galaxy Zoo studies cluster environment impact on radio galaxy morphologies

The following blogpost is from Avery Garon who led the publication of Radio Galaxy Zoo’s latest science result. Congratulations to Avery and team!

***************

Radio Galaxy Zoo is starting the new year strong, with another paper just accepted for publication. “Radio Galaxy Zoo: The Distortion of Radio Galaxies by Galaxy Clusters” will appear soon in The Astronomical Journal and is available now as a pre-print on the arXiv: https://arxiv.org/abs/1901.05480. This paper was led by University of Minnesota graduate student Avery Garon and investigates several ways in which the shape of a galaxy’s radio emission is affected by and informs us about the environment in which we find the galaxy.

Like the previous RGZ paper, we are looking for how the radio tails extend into the hot plasma that fills galaxy clusters (the intracluster medium, or ICM). This time, we measure how much the two tails deviate from a straight line, marked in the example below by the value θ. The standard model is that the ICM exerts ram pressure on the galaxy as it travels though the cluster and causes its tails to bend away from the direction of motion. However, while individual clusters have been studied in great detail, no one has had a large enough sample of radio galaxies to statistically validate this model. Thanks to RGZ, we were able to observe the effect of ram pressure as a trend for the bending angle θ to increase for galaxies closer to the center of clusters (where the ICM density is higher) and in higher mass clusters (where the galaxies orbit with higher speeds).

avery_blogfig

Example source RGZ J080641.4+494629. The magenta arrows extend from the host galaxy identified by RGZ users and terminate at the peaks of the radio emission, defining the bending angle θ. The cyan arrow is used to define an orientation for the galaxy with respect to the cluster.

Because ram pressure causes the tails to bend away from the direction in which the galaxy is travelling, we can use this knowledge to map out the kinds of orbits that these galaxies are on. Unlike planetary orbits, which are nearly circular and all in the same plane, the orbits of galaxies in clusters tend to be randomly distributed in orientation and eccentricity. Our sample of bent radio galaxies shows an even more striking result: they are preferentially found in highly radial orbits that plunge through the center of their clusters, which suggests that they are being bent as their orbits take them through the dense central regions.

Finally, we looked at radio galaxies that were far from clusters. Even though the median bending angle is 0° away from clusters, there is still a small fraction of highly bent galaxies out there. By counting the number of optical galaxies that are near the radio galaxies, we observed a sharp increase in the number of companions within a few hundred kiloparsecs of our bent radio galaxies. This suggests that even outside of true cluster environments, we are still observing bending induced by local overdensities in the intergalactic medium.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: