Radio Galaxy Zoo: what radio lobe shapes tell us about the mutual impact of jets and intergalactic gas

The following blogpost is from Stas Shabala about the Radio Galaxy Zoo paper led by his student, Payton Rodman, exploring the origin of asymmetries observed in a sample of Radio Galaxy Zoo radio galaxies.


Another Radio Galaxy Zoo paper has just been accepted for publication. “Radio Galaxy Zoo: Observational evidence for environment as the cause of radio source asymmetry” will shortly appear in Monthly Notices of the Royal Astronomical Society, and is already available on the preprint server ( This paper, led by University of Tasmania undergraduate student Payton Rodman, looks at the properties of lobes in powerful radio galaxies. These lobes are inflated by a pair of jets, emerging in opposite directions from the accretion disk of the black hole at the centre of their host galaxy. Astronomers have known for a while that how big, bright or wide the radio lobes are depends on the properties of the intergalactic gas into which these lobes expand. Small, slow-growing lobes are usually found in galaxy clusters, while their large, rapidly expanding cousins tend to stay away from such dense environments. Radio lobes move about and heat intergalactic gas, and in this way they are thought to be responsible for regulating the formation of stars (by staving off the gravitational collapse of cold gas) in massive galaxies over the last eight billion years. Because of this, understanding how jets and lobes interact with their surroundings is important for understanding the history of the Universe. What complicates matters is that the mechanisms responsible for feeding the black hole and generating jets are also different in these two environments. So does nature or nurture determine what the lobes look like?


Still snapshot of hydrodynamic simulation of asymmetrical radio jets by Patrick Yates from the University of Tasmania. Check out the movie clip here

We decided to use the fact that all radio galaxies start out with two intrinsically identical jets propagating in opposite directions. If the two resultant lobes look different, this could only be due to the interaction with the surrounding gas – in other words, nurture. To test the nurture hypothesis, we used the first tranche of Radio Galaxy Zoo classifications. We selected all sources classified by citizen scientists to contain two clear radio lobes, and subjected this sample to a number of rigorous cuts on brightness, shape, redshift, and availability of environment information. Hot intergalactic gas is usually traced by X-ray observations, but these are unavailable for the majority of the sample. Instead, we used the clustering of optical galaxies from the Sloan Digital Sky Survey, which should be a good proxy for the underlying gas distribution. Then, for each radio galaxy, we compared the properties of the two radio lobes to how many galaxies were found near each of the lobes. We found a clear anti-correlation between the length of the radio lobe, and the number of nearby galaxies – in other words, shorter lobes have more galaxies surrounding them. These results were in excellent agreement with quantitative predictions from models (such as this hydrodynamic simulation made on the University of Tasmania’s supercomputer by PhD student Patrick Yates), which show that it is more difficult for lobes to expand into dense environments. The relationship between the luminosity of the lobes and galaxy clustering was much less clear, again consistent with models which predict a highly non-linear luminosity evolution as the lobes grow.

The excellent agreement between models and observations suggests that it is nurture, not nature, which determines lobe properties. It also opens up a new way of studying radio galaxy environments: though sensitive observations of optical galaxy clustering. With help from Zooites, we hope to expand this work to a much larger Radio Galaxy Zoo sample, which would allow us to probe the finer aspects of jet – environment interaction. Further afield, the ongoing GAMA Legacy ATCA Southern Survey (GLASS) project on the Australia Telescope Compact Array, as well as the Australian Square Kilometre Array Pathfinder EMU survey, will use this method to study the physics of black hole jets and the impact they have on their surroundings in a younger Universe.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: