New Hubble+Gemini results – history of fading AGN

Just in time to brighten our holiday season, we got word that the Astrophysical Journal has accepted out next paper on the Voorwerpje clouds around fading active galactic nuclei (AGN). The full paper is now linked on the arXiv preprint server.

This time, we concentrated on the clouds and what they can tell us about the history of these AGN. To do this, we worked pixel-by-pixel with the Hubble images of the clouds in the H-alpha and [O III] emission lines, augmented by a new (and very rich) set of integral-field spectroscopy measurements from the 8-meter Gemini North telescope, velocity maps from the Russian 6-meter telescope, and long-slit spectra from the 3-meter Shane telescope at Lick Observatory.

To examine the history of each AGN, our approach was that the AGN had to be at least bright enough to ionize the hydrogen we see glowing at each point at the time the light reaching that point was given off. Certainly we can’t expect each piece of the cloud to absorb all the deep-UV radiation, so this is a lower limit. Two external checks, on quasars unlikely to have faded greatly and on the Teacup AGN which has had detailed modeling done from spectra, suggests that the very brightest pixels at each radius absorb comparable fractions of the ionizing radiation. This gives confidence that we can track at least the behavior of a single object, underestimating its brightness by a single factor, if we look at the upper envelope of all pixels in the H-alpha images. We hoped this would be feasible all the way back to the original Hubble proposal to look at Hanny’s Voorwerp. Here is a graphic from the new paper comparing our AGN in this way. The distance in light-years at each point corresponds to the time delay between the AGN and cloud, and the curve labelled “Projection” shows how much one of these points would change if we view that location not perpendicular to the light but at angles up to 30 degrees each way. To be conservative, the plot shows the data corresponding to the bottom of this curve (minimum AGN luminosity at each point).agnhistories-sm

The common feature is the rapid brightness drop in the last 20,000 years for each (measured from the light now reaching us from the nuclei). Before that, most of them would not have stood out as having enough of an energy shortfall to enter our sample. Because of smearing due the large size of the clouds, and the long time it takes for electrons to recombine with protons at such low densities, we would not necessarily see the signature of similar low states more than about 40,000 years back.

We could also improve another measure of the AGN history – the WISE satellite’s mid-infrared sky survey gave us more accurate measure of these objects’ infrared output. That way, we can tell whether it is at least possible for the AGN to be bright enough to light up the gas, but so dust-blocked in our direction that we underestimate their brightness. The answer in most cases is “not at all”.

New data brought additional surprises (these objects have been gifts that just keep on giving). The Gemini data were taken with fiber-optic arrays giving us a spectrum for each tiny area 0.2 arcseconds on a side (although limited to 3.5×5 arc second fields), taken under extraordinarily steady atmospheric conditions so we can resolve structures as small as 0.5 arc second. We use these results to see how the gas is ionized and moves; some loops of gas that earlier looked as if they were being blown out from the nuclei are mostly rotating instead. Unlike some well-studied, powerful AGN with giant emission clouds, the Voorwerpje clouds are mostly just orbiting the galaxies (generally as part of tidal tails), being ionized by the AGN radiation but not shoved around by AGN winds. This montage shows the core of NGC 5972 seen by these various instruments, hinting at the level of mapping allowed by the Gemini spectra (and helping explain why it took so long to work finish the latest paper).ngc5972-hst-gmos-bta

Work on the Voorwerpjes continues in many ways. Galaxy Zoo participants still find possible clouds (and the moderators have been excellent about making sure we see them). There is more to be learned from the Gemini data, while X-ray observatories  are gradually bringing the current status of the AGN into sharper focus. A narrowband imaging survey from the ground can pick out fainter (and sometimes older) clouds. Colleagues with expertise in radio interferometry are addressing questions posed by the unexpected misalignments of optical and radio structures in some of our galaxies. Finally, the new DECaLS and Pan-STARRS survey data will eventually bring nearly the whole sky into our examination (for a huge range of projects, not just AGN history).

Once again, thanks to all who have helped us find and unravel these fascinating objects!

3 responses to “New Hubble+Gemini results – history of fading AGN”

  1. Peter Dzwig says :

    Wow Bill! Amazing. Hanny’s legacy goes on. That is what GZ can do for you. I look forward to reading the paper on ArXiv…probably tomorrow now. Happy Christmas!

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: