1 million classifications and beyond!

Huzzah! We have now broken through the 1 million mark with Radio Galaxy Zoo as of January 16, 2015. It has taken all of you ~13 months to do 40 years worth of cross-identifications. Well done and a huge thank you to every single one of you out there who helped us along.

A big shout-out to the winners of our 1 millionth classification milestone competition. The winners are: @planetari7, @ChrisMolloy, @leonie van vliet, @antikodon, @BOSSARD louis michel and @JF45456.   I will be e-mailing each of you soon.

My biggest thank you to every single Radio Galaxy Zooite who helped us get this far. We really could not have done this without you.

Sincerely,

Ivy, Julie & the entire RGZ team

New ATLAS images for Radio Galaxy Zoo

Dear Radio Galaxy Zoo volunteers,

Thanks again for all your help so far in classifying radio galaxies through RGZ. We’re rapidly approaching our 1 millionth classification, probably by the end of this week (Jan 15-17) at the current rate. Don’t forget that we’ll be awarding prizes!

In the meantime, we’re excited to announce that we’ve just finished processing a new set of images for RGZ. There are 2,461 new images in total: the radio images are from a survey named ATLAS, carried out by the ATCA telescope in Australia. The corresponding infrared images come from the Spitzer Space Telescope as part of a survey named SWIRE.

Due to the differences in telescopes (ATCA has fewer dishes and a different arrangement of them than the VLA, while Spitzer has a much bigger mirror than WISE) and the depths of the two surveys, the data will look a little bit different. If you’ve done lots of classifications on Radio Galaxy Zoo already, you may notice more elongated radio beams in the ATLAS data, as well as a slightly larger size of the smaller unresolved noise spots. ATLAS can also detect fainter objects than the FIRST survey.

The new SWIRE infrared images have about twice the angular resolution of WISE (it can separate objects down to 3 arcseconds apart) and are more than 20 times as sensitive. That means you’ll likely see more infrared objects in the new images, and might have more choices for likely host galaxies for radio emission.

An example of one of the new ATLAS/SWIRE images  for Radio Galaxy Zoo, as seen in Talk. From left to right: radio contours, infrared overlaid with radio, infrared only.

An example of one of the new ATLAS/SWIRE images for Radio Galaxy Zoo, as seen in Talk. From left to right: radio contours, infrared overlaid with radio, infrared only.

Since the images are mostly similar, the task for RGZ hasn’t changed (in fact, the original tutorial image was from ATLAS data). We’re still asking you to pick out individual radio components (or groups of components) and match them to their IR host galaxies. The new images will be randomly mixed in with the older images; you should see an ATLAS image every 6th or 7th classification, on average. If you’re curious whether a galaxy you’ve just classified is in ATLAS, the easiest way is to look at it in Talk: the new galaxy names will begin with a “C” (eg, “CI3180”) and will have declinations that are negative (eg, -27.782) showing that they’re in the Southern Hemisphere.

We’ll post a longer blog post very shortly with more information on ATLAS, SWIRE, and what we’re hoping to learn from these new images. In the meantime, please post here or on Talk if you have any questions!

And keep up the classifications in the next few days — hopefully you can be our 1 millionth image!

Seasons Greetings 2014!

Seasons Greetings for the end of 2014, and many thanks for all the classifications you provided for us at Galaxy Zoo this year!

Happy 1st birthday Radio Galaxy Zoo!

Hurray! Radio Galaxy Zoo has reached its first anniversary!

AGNcake

A scrumptious cake model of an AGN made by Zookeeper Kevin’s students, Anna Weigel & Lia Sartori.

What a wonderful year it has been! In 1 year, we have completed ~30% of the project and  have reached nearly 1 million classifications! In celebration of our anniversary, we are announcing that we will offer some special prizes to the first few citizen scientist(s) who take us to the 1 millionth classification and beyond! The top prizes we have to offer include a signed copy of “Bang! — the complete history of the Universe” signed by Brian May & Chris Lintott, a black ICRAR T-shirt (in your size), a CSIRO water bottle, CSIRO mugs, 3D telescope bookmarks and some Zooniverse stickers.

bang

First prize for the RGZooite who helps us reach 1 million classification gets a signed copy of “Bang!” !

Using the current number of classifications of 931,029 and assuming that each classification took 5 minutes, this translates to a continuous working time of nearly 9 years! If we assume that one can only classify continuously over a standard 40-hour work-week, it’d take more than 37 years to complete what you all have so kindly done in 1 year!

In addition to matching the radio jets with their black holes, we (the citizen scientists & the science team) are making  new discoveries of extreme types of radio galaxies. Just a few days after launch last year, @Dolorous_Edd and @antikodon discovered a very large nearby wide-angle tailed radio galaxy. They are currently working with Prof Rudnick and Prof Andernach on publishing their findings and analysis. Large teams of RGZ citizen scientists are also helping Dr Kapinska and Dr Mao with their search for Hybrids and S-DRAGNs, respectively!

Thank you all so very much for your support! We are most grateful for such a humbling effort by everyone. We hope that all of you have a wonderful holiday period and wishing you all a great upcoming year!

Best wishes, Ivy & Julie
(@ivywong & @42jkb)

Remote Observing with the CSO

You might be wondering what I’m doing on the Galaxy Zoo blog (normally you find me at Planet Four and Planet Hunters). Instead of studying planets and minor planets, a few weeks ago I was helping observe blue elliptical galaxies with some of Chris research group (his graduate students Becky and Sandor with  help from Chris) using the Caltech Submillimeter Observatory (CSO). Chris wrote back in July  about remote observing on CSO for a project looking at blue elliptical galaxies. Those nights in July were bonus nights. They got traded to us because the group observing needed better weather, and they kindly gave us the nights when the forecast was predicted to be not good enough for their main project  in case we could do something useful with the time. We had just submitted the observing proposal to ask to use the CSO a few weeks before that. Those nights were good training for all of since we had never used the CSO before (and that was my first foray into submillimeter observing).  In the fall, we learned that our proposal was accepted. We got awarded one night in November and 6 nights sometime in the the first part of 2015. We should know the exact dates when the observing calendar comes out in December.

Image credit: CSO/Caltech

Image credit: CSO/Caltech

The CSO is a single dish 10-m telescope located on Mauna Kea. The cool thing is that you can log in and drive the instruments and the telescopes remotely. On the night of November 18th in Hawaii (November 19 in the UK and Taiwan), I was logged in from Taipei, and Chris student’s Becky and Sandor were logged in from Oxford very very early in the morning commanding the telescope and instruments. This was Becky’s second run with the CSO, she co-observed during the July run. This was Sandor’s first time with the CSO and submilimeter observing.

B2yO0l2CcAAKLlA

Becky & Sandor awake well before sunrise in the UK but very excited to be observing on Mauna Kea

We had really great weather and conditions. The opacity through the atmosphere in the submilimeter was stable and really low.  You can see from the screen grab I took below

B2z-4KCCQAA6N_e

The green line is the measurement from the CSO and the red is another larger submilimeter telescope. The grey area shows nighttime on Mauna Kea. You can see conditions were really stable.

We were a bit too busy to blog during the night, but I thought I’d share some of the screen shots and photos we took that night including some of the computer interfaces we use to control the CSO and know the status of the telescope – Below is one of the orrery – it tells us where our target and other standard stars, Solar System planets, and other standard calibrators are in the sky. This is very handy when you’re looking for a pointing carbon star to go to tune and check the telescope pointing or if you want to double check a planet is observable for pointing and calibration. Below the orrery is the waveform for the secondary mirror telling us that it is indeed oscillating back and forth ,which is what we required for our observations.

orrrery

Top: CSO orrery Bottom – shows the status of the secondary mirror and the waveform tells us the secondary mirror is wobbling like it should.

This is the status window for the spectrographs. There are  two that receive light at the same time. The bottom one covers a wider wavelength than the top one, but the wavelengths we’re interested in are captured on both.

Screen Sharing Picture November 19, 2014 at 12.20.30 AM HST

Image of the spectrograph status displays after a temperature calibration was taken.

We use carbon stars with strong CO emission features to tune the pointing of the telescope. You cans see the strong CO(2-1) line in the middle as the sharp peak.

B2zTOZ2CUAACncR

Observing a carbon star

Here’s a picture of Becky hard at work working checking that our calibration observation was centered at the right wavelength we were supposed to observing at.

B2zckBDCQAAc3NO

First Results from Galaxy Zoo: CANDELS

I am very happy to present the results from the first published paper based on your classifications of the HST-CANDELS Images.

Galaxy Zoo: CANDELS combined optical and infrared imaging from the Hubble Space Telescope, which allows us to probe galaxies back to when the universe was only around 3 billion years old (early than we could do with optical HST images alone). So we are looking at galaxies whose light has taken over 10 billion years to reach us!

Our first area of research with this data is to look at disk and barred disk galaxies, as the title suggests…….

title

This work is based on an initial sample of 876 disk galaxies, which are from the Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS). We want to explore what happens to barred disk galaxies beyond eight billion years ago, building on our work looking at the evolving bar fraction with Galaxy Zoo: Hubble.

When we began this work, we were unsure what we would find when looking so far back. From our Galaxy Zoo: Hubble work we had identified that 10% of disk galaxies hosted a galactic bar eight billion years ago, but beyond this our knowledge of disks was limited to a single simulation of disk galaxies. This simulation predicted that bars in disk galaxies were very rare beyond the epoch we had observed to, as the Universe would be to young for disk galaxies to
have settled down enough to form barred structures.

candels

Figure 1: The bar fraction of GZ: CANDELS galaxies (top), and the absolute magnitudes of all the disk and barred disk galaxies in the sample (bottom) (Figure 5 in the paper).

As Figure 1 shows, we actually find that roughly 10% of all disk galaxies host a bar, even back to when the Universe was only 3 billion years old! This is a very exciting result, as it shows that disk galaxies were able to settle at much earlier times than originally believed.

What we need to understand now is how do these disk galaxies form their bars? Could they be completely settled disk galaxies which have naturally formed bars, even during this epoch of violent galaxy evolution where galaxy mergers are more frequent? Or were these bars formed by a galaxy-galaxy interaction, as seen by some simulations? The answer could be one or the other, or most likely a combination of these two theories. Either way, we hope to explore this population of barred disk galaxies in greater detail over the coming months!

candels_galaxies

Figure2: Examples of disk (top row) and barred disk (bottom row) galaxies from Galaxy Zoo: CANDELS (Figure 3 in the paper).

So there is a summary of the first Galaxy Zoo: CANDELS paper. If you would like to see this in more detail, please take a look at the paper here, and why not check out the RAS press release too! Thank you all for your hard work, and keep classifying!

Posted on behalf of Tom Melvin. 

New Galaxy Zoo Paper Accepted For Publication!

A paper that uses Galaxy Zoo: Hubble to study whether supermassive black holes are fueled by galaxy bars beyond the local universe has recently been accepted! The paper will be published in MNRAS, but for a short summary, here is the original blog post.

Fibers and Voorwerpjes

While preparing for more observations of the Galaxy Zoo giant AGN clouds (Voorwerpjes), this is a good time to introduce more complete ways of obtaining astronomical spectra. Traditionally, we’ve put a long slit in front of spectrographs, so we can measure everything along that line without worries about overlapping spectra of different objects or pieces of sky. In some cases, as with the optical fibers used by the Sloan Digital Sky Survey, we get the light summed within a circular aperture on the sky (with Sloan, from hundreds of different objects at each pointing of the telescope). But many of the things we want to understand are large and oddly shaped, so these approaches limit us to a very partial view (or to making many observations to cover everything of interest). Enter the Integral-Field Unit (IFU), which is any kind of device that lets us get the spectrum of every point in some region of the sky. They often use fiber optics to rearrange light from the object, so each small region of it comes out at a different place on what would otherwise be the spectrograph slit. After that it all becomes a software problem.

IFUs are becoming more common on large telescopes. We’ve gotten excellent data on some Voorwerpje systems with the unit on the 8-meter Gemini North telescope. Here’s a sample of raw data on UGC 11185. Each horizontal streak is the spectrum of an area 0.2 arcseconds square. The sampling, sensitivity, and image quality are superb, revealing multiple clouds of gas moving within a total span of almost 1000 km/s.

ugc11185obs17quickblue

On the other hand, if we want to use its whole wavelength range, the Gemini device covers only 3.5×5 arcseconds of sky at once. I’m headed to the 3.5m WIYN telescope on Kitt Peak to use a complementary device called Hexpak, newly commissioned by instrument designer Matt Bershady of the University of Wisconsin (who I’ve been emailing about this since I learned of the project three years ago). This fiber bundle plugs into the multipurpose spectrograph kept in a climate-controlled room below the telescope, and combines small and densely-packed fibers in the middle (for things like galactic nuclei, small and bright with lots of structure) and large fibers near the edges (collecting a lot of signal from large diffuse surrounding material – sound familiar?). Matt and his team were able to get a short exposure through thin clouds of UGC 11185 as a feasibility test – here’s a piece of that raw data frame, showing the small central fiber and the larger surrounding ones (which show brighter night-sky airglow lines as well as more object signal; the bright [O III] lines and H-beta are near the middle, with wavelength increasing to the right for each spectrum). I hope to get a lot more data like this shortly.
UGC11185hextest

Elsewhere, the European Southern Observatory has commissioned an enormous IFU, and the Sloan team has rebuilt their fiber bundles so that each one now makes multiple IFUs which can be placed on many galaxies at a time – this part of the Sloan survey extension is known as MANGA. Then there is the Spanish-led CALIFA project for hundreds of galaxies, which has publicly released data for their first two subsets. Then there are SAURON (whose data ca be tamed in software by GANDALF) and the upgrade of SCORPIO-2 and more… Swimming in data as we sift for knowledge, I am reminded of this anonymous computer error message in haiku form:

Out of memory.
We wish to hold the whole sky
but we never will.

Radio Galaxy Zoo: “gold standard” images and improving our calibration

First off, the science team for Radio Galaxy Zoo wants to thank our volunteers for their continued clicks, discussion on Talk, and continued participation in the project. As of today, we have 892,582 classifications on RGZ and over 45,000 subjects completed from the FIRST-SDSS sample. We absolutely could not do this without you, and we’re working hard on turning the data into interesting science.

We want to let you know of some particular galaxies that will be appearing slightly more often in the interface. One of the things I’ve been working on for Radio Galaxy Zoo over the last month is finding better and smarter ways of combining clicks from independent classifiers into the “final answer” for each galaxy. For past Zooniverse projects, we’ve been able to do this using relatively simple methods – users are weighted a little bit by their consistency with other volunteers, but the final data product is mostly just the vote fractions for various tasks. However, the task in RGZ is a bit more complex, and the simpler methods of combining classifications are proving very difficult. In order to accurately combine the information each volunteer gives us, we need to establish a bit more common ground than we currently have.

To calibrate the clicks across all citizen scientists, we need to look at galaxies that the same people have done. The science team has started this by labeling the correct morphologies (to the best of our abilities) for a smaller, “gold standard” sample. We use these as seed weights in our data reduction – that lets us calibrate users who have done the gold standard galaxies. These results are propagated outward to the full sample by looking at other galaxies done by both calibrated and uncalibrated users, and so on. Kind of like pulling ourselves up by the bootstraps. 🙂

Result of the science team classification of a small sample of 100 RGZ galaxies. The height of the bar represents how well a particular science team member agreed with the others. As a group, the results show very good consistency overall, near 90%. Using the results from this sample, we can apply similar calibrations to the tens of thousands of galaxies that RGZ citizen scientists are helping us with.

Result of the science team classification of a small sample of 100 RGZ galaxies. The height of the bar represents how well a particular science team member agreed with the others. As a group, the results show very good consistency overall, near 90%. Using the results from this sample, we can apply similar calibrations to the tens of thousands of galaxies that RGZ citizen scientists are helping us with.

What we’re missing right now, though, are galaxies that lots of citizen scientists have jointly classified. Since each galaxy is retired after 20 people classify it, the chances of seeing a particular galaxy is pretty low. Some members of the science team, including myself, recently sat down with a sample of 100 galaxies taken from a combination of random selection and ones you’ve identified on Talk as having interesting or non-trivial morphologies (bent jets, triple systems, giants, no IR counterparts, etc). These is what we’d like to use for calibration. However, only about a dozen users so far have done enough of this sample to give us enough data for calibration.

So, in order to help the accuracy of the data pipeline, we’ve chosen 20 “gold standard” galaxies that will eventually be shown to all volunteers. They won’t all be in one bunch (you should see one every five subjects or so) and you shouldn’t see any galaxies that you’ve classified before. We’ll label the galaxies on Talk – look for the hashtag #goldstandard. I hope that another positive outcome will be users getting to discuss interesting features in galaxies that they haven’t come across before. After you’ve done all 20 galaxies in the sample, your future classifications will be randomly selected as usual.

ARG0001e8e

ARG0001e8e – a very nice core + hotspot system, and slightly challenging morphology to classify. This is one example of the 20 “gold standard” galaxies we’re trying to have everyone in RGZ classify.

Please let us know on Talk if you have any questions about this, and I’ll be happy to discuss it further. Thanks again for all of your help – we hope this will let us produce a more accurate RGZ product and science papers in the coming year!

RGZ Team Spotlight: Minnie Mao

Meet Minnie Mao, leading the study of spiral double radio lobe AGNs (or S-DRAGNs) for Radio Galaxy Zoo.

minnie_vlaHello! My name is Minnie and I am a VLA postdoc at NRAO in Socorro, NM. Astronomers use a lot of acronyms, and often are not very creative with telescope names/ VLA stands for ‘Very Large Array’, which is where some of the Radio Galaxy Zoo radio images come from!

I did my PhD at the University of Tasmania with Ray Norris (yup, THE Ray Norris), Jim Lovell, and Rob Sharp. We used optical data cross-matched with radio data from the ATCA (Australia Telescope Compact Array, where the rest of the RGZ radio images come from) to determine how galaxies have changed across cosmic time. A large chunk of the PhD was spent staring at images of radio galaxies, classifying their morphology, and determining their counterparts in optical/infrared images. While this can be a lot of fun, the Universe is rather large so I am glad I can now share this job with the wonderful zoo-ites!

One of my primary reasons for being involved in RGZ is because I am excited for the day when radio images become as familiar to people as optical images. To this end I hope you enjoy RGZ, because really, what is more fun than peering far back into the nether-reaches of the Universe?