Archive by Author | Kyle Willett

Radio Galaxy Zoo: conferencing in Italy (Day 4)

Final day of the conference. Still pro-pasta, but may have hit my personal limit on gelato and/or red wine.

We had only a half day for the final day of the Bologna workshop on extragalactic radio surveys. After a tasty conference dinner at the historic Palazzo Re Enzo, we devoted the morning to AGN physics. This is the counterpart to the sessions we had on star formation in galaxies on Monday; almost all continuum radio emission that we detect in individual galaxies is either due to a thermal component from star formation or synchrotron and free-free emission that’s produced in some way by the central supermassive black hole, known as an active galactic nucleus (AGN).

Leith Godfrey (ASTRON) gave a really neat talk on “remnant” radio galaxies, which refers to galaxies that still have active radio emission from the heated plasma in distant lobes, but for which we don’t see the jet because the black has shut down its active phase some time ago (in our observed frame). We can identify these remnants both via morphology (big radio lobes with no jet or core) and through their radio spectra – energy losses from the particles cause a characteristic curved shape which you see if you plot frequency vs. radio flux density. Leith has been doing statistical studies of remnants, finding that less than 1% of bright radio sources are in a dying phase. This is interesting since the number of sources we observe constrains the timescales on which radio galaxies die. It also points toward certain physical properties – there are strong adiabatic losses after the jet switches off, but the lobes seem to remain very high-pressured compared to their environments right up until the end of their lives.

Marisa Brienza (ASTRON) gave the talk immediately following on a new remnant, named BLOB1, that she and her team just detected with LOFAR. LOFAR, a low-frequency array located in the Netherlands and other European countries, is just ramping up full operations, but will be a hugely powerful instrument for increasing the size of these samples over the next decade.

Example of a new radio remnant, named BLOB1, detected with the LOFAR telescope at 137 MHz. From Brienza et al. (2015).

Example of a new radio remnant, named BLOB1, detected with the LOFAR telescope at 137 MHz. From Brienza et al. (2015).

After several more talks, Mike Garrett (ASTRON/Leiden) gave some closing remarks on the conference, including some summaries of what had been discussed and where he thought the future of extragalactic radio sources was going. I was really stoked that RGZ was one of the first results that he specifically cited as being important; Mike mentioned both citizen science and new distributed software routines as being crucial for dealing with the potentially billions of new celestial sources that telescopes will detect in the next decade. The role of citizen scientists in radio astronomy may change – I’ve talked to scientists at this conference about someday doing tasks other than morphology identification, for example – and we’ll definitely have to increase the interplay between the citizen science datasets and machine learning algorithms to maximize our survey results. But, as Mike said on his final slide, the present state of radio surveys is very bright indeed, and we have every reason to think that the best is yet to come.

It’s been a fantastic workshop, and I’m grateful to the conference organizers for accepting my talk and offering financial assistance, the American Astronomical Society for covering my travel costs, and the NSF for partially supporting my work on RGZ at the University of Minnesota. Looking forward to a day or so of sightseeing this weekend, but I’m inspired to get back to work next week and continue being part of such a vibrant scientific community.

Radio Galaxy Zoo: conferencing in Italy (Day 3)

75% done with the conference. Still not sick of pasta yet.

Day 3 of the Bologna workshop on extragalactic radio surveys started with a session on the most massive structures in the Universe: galaxy clusters. These collections of galaxies within massive dark matter haloes show up in radio surveys in several different ways: these include radio haloes, which are diffuse large-scale emission regions not associated with a particular galaxy; radio relics, which are similar features but found at the edge of clusters and likely driven by shock waves, and individual radio galaxies found within and nearby these clusters. Reinout van Weeren (Harvard/CfA) gave a really interesting talk on measuring the spectral index in radio relics; this means measurements of the ratio of the radio luminosity at different frequencies, similar to the way color is defined at optical wavelengths. Changes in the radio spectral index trace variations in turbulence in the intracluster medium, or possibly changes in magnetic fields; the fact that radio relics in many clusters have very different spectral index maps is a puzzle that makes it difficult to explain them with a single model.

A spectral index map of the

A spectral index map of the “Toothbrush Relic” (1RXS J0603.3+4214) between frequencies of 610–325 MHz, taken with the Giant Metrewave Radio Telescope in India. From van Weeren et al. (2012).

We also had the second poster session of the conference, including another Radio Galaxy Zoo result! The poster was led by RGZ science team member Minnie Mao (Joint Institute for VLBI in Europe), titled “Here Be Spiral DRAGNs”. Jean Tate, Minnie Mao, and several RGZ volunteers and science team members have been using RGZ to search for radio-loud AGN whose host galaxy is a spiral.* The acronym “DRAGN” stands for “double-lobed radio source associated with galactic nuclei”. These are extremely rare objects – the number of confirmed spiral DRAGNs discovered so far can be counted on your fingers – but really interesting. The standard physical model for how double-lobed, powerful radio sources are generated are triggered by mergers between galaxies and ultimately their black holes. In the process, a major merger disrupts and destroys the disk of the galaxy, resulting in an elliptical – this theory would predict that we see double radio AGN exclusively in massive ellipticals. That’s mostly true, but the existence of exceptions are fascinating and force astronomers to consider alternatives or extensions to the merger driven hypothesis. Minnie and Jean are going through a sample preliminarily assembled in RGZ to try and identify more candidates like these.

Minnie Mao (left) loves explaining her research on spiral DRAGNs from Radio Galaxy Zoo.

Minnie Mao (left) loves explaining her research on spiral DRAGNs from Radio Galaxy Zoo.

One more day to go!

*Changed wording on 24 October 2015 to emphasize the roles played by both volunteers and the science team.

Radio Galaxy Zoo: conferencing in Italy (Day 2)

Yesterday was the second day of the workshop in Bologna on extragalactic radio surveys, where I’m attending and gave a talk on Radio Galaxy Zoo. We had three major blocks of talks yesterday: one on galaxy evolution, one on cosmology, and the final one on exploiting synergies between radio telescopes.

Galaxy evolution is a big topic, and one that drives a lot of the science behind both Galaxy Zoo and Radio Galaxy Zoo. Several of the talks really highlighted the importance of having multiwavelength data, in addition to what we learn from the radio (this is one of our main goals identifying the optical counterpart in our project). A couple of the most famous deep fields which have been studied in radio were discussed, including the VLA-COSMOS study, GOODS-North, and the Hubble Deep Field.

Poster showing the field and some zoomed-in sources from the VLA-COSMOS project. http://www.mpia.de/COSMOS/

Poster showing the entire field and some zoomed-in radio sources from the VLA-COSMOS project. http://www.mpia.de/COSMOS/

Data from new telescopes, like the low-frequency LOFAR, are yielding some exciting results. One interesting result was the fact that lower-mass galaxies more commonly hosted active galactic nuclei (AGN) seen in the radio in the early Universe, at redshifts of 1 < z < 2. Galaxies with higher masses, however, had about the same fraction of radio-loud AGN at this time. It’s interpreted as being the result of more galaxies accreting matter in what’s known as “cold” or “radiative mode”, thanks to the increase in the supply of cold gas available to galaxies at earlier times (Wendy Williams, U. Hertfordshire).

Cosmology is probably being a bit underrepresented at this conference, since we only had three talks in this session. A lot of the focus was on how detecting very large samples of galaxies (both in radio continuum, like the FIRST and ATLAS surveys in RGZ data, as well as looking at spectral lines like the 21-cm hydrogen line) constrain our cosmological models. Different parameters for both dark energy and dark matter make specific predictions for how populations of galaxies evolve, including their numbers, distributions of sizes and masses, and geometrical arrangement. You can also test cosmology through gravitational lensing at radio wavelengths. It’s promising, but very challenging compared to how it’s done in optical wavelengths due to difficulties in fitting shapes in the raw visibility data (Prina Patel, U. Western Cape).

One of the talks I found really interesting (and new to me) was by Emma Storm, from GRAPPA/U. Amsterdam. She gave a great presentation on how radio observations explore the nature of dark matter. While we don’t know a huge amount about the nature of the dark matter particle, one prominent theory predicts that when they collide, the particles annihilate and produce other particles in the Standard Model that we can directly observe (like pions and gamma rays). If that’s so, then these annihilations would also produce charged particles like electrons and positrons; when those particles are accelerated in magnetic fields, they emit synchrotron radiation, which we detect in the radio. So by looking for radio emission in objects that we expect to be dominated by dark matter (like galaxy clusters), scientists can constrain the parameters of their dark matter models, particularly things like the cross-section. The signal this would produce is expected to be diffuse and weak, though; Emma’s work doesn’t detect radio emission in many clusters, but places important upper limits on the amount that could be there within the detection limits.

Limits on dark matter annihilation cross sections as a function of the particle's mass. Each curve is an upper limit based on radio observations of a galaxy cluster (from Storm et al. 2013).

Limits on dark matter annihilation cross sections as a function of the particle’s mass. Each curve is an upper limit based on radio observations of a galaxy cluster (from Storm et al. 2013).

The last session of the day dealt with synergy and commensality. I normally hate things that sound like business-speak buzzwords, but in this case it is really important – we have a number of new radio telescopes coming online now or in the next several years, such as ALMA in Chile, LOFAR in Europe, and the Square Kilometer Array in Australia and South Africa. It’s quite important to plan the capabilities and designs of each so that we don’t repeat work unnecessarily, maximize the scientific output, and try to make the data and results available to as many people as possible.

Halfway over already! You can also follow what some of the other people have been discussing at the conference at the hashtag #radsurveys15.

Radio Galaxy Zoo: conferencing in Italy (Day 1)

One of the best things about being a scientist is the opportunity to attend conferences – you get to visit a new place, meet your colleagues in person, learn about what they’ve been doing, and get a chance to share your exciting research with them. I’m lucky (through the assistance of the American Astronomical Society, the Italian National Institute for Astrophysics, and the University of Minnesota) to participate in a conference this week on the future of extragalactic radio surveys in Bologna, Italy. I’m getting my first chance to share results from Radio Galaxy Zoo and to learn about other, new results in the area of extragalactic radio science!

The conference is four days, from Tuesday – Friday; I’m going to try to make a blog post each day. I’m going to try give a quick overview of all talks/posters on the day, as well as more details on talks which I thought were particularly interesting. I know I won’t do justice to many of the interesting research topics being presented, but I won’t have time to give every topic the breadth they deserve.

The first day of the workshop started with several talks covering current and upcoming surveys in radio astronomy. These include radio telescopes in the Northern Hemisphere. The two main telescopes discussed were the Very Large Array (VLA) in New Mexico, USA, which will run surveys like VLITE (a low frequency survey which will run constantly on the telescope in parallel with other observations), and VLASS, a new all-sky survey with many similarities to the current FIRST data in Radio Galaxy Zoo. LOFAR is a low-wavelength radio telescope with stations centered around Europe; it will open up similar resources, but at significantly lower frequencies than the VLA and thus probing different physical phenomena. In the Southern Hemisphere, the EMU survey in Australia and the MIGHTEE survey in South Africa will carry out similar responsibilities.

I gave a talk at the end of this session on Radio Galaxy Zoo, covering our first accepted paper and some of our early science results. If you’re interested, I’ve put my talk online here.

Example slide from K. Willett's talk on Radio Galaxy Zoo at the Bologna workshop.

Example slide from Kyle Willett’s talk on Radio Galaxy Zoo at the Bologna workshop.

The afternoon had two sessions on science: one on radio continuum and star formation, and one on radio observations of the transient universe.

I think after the first day that I’m filled with a great sense of optimism about radio astronomy. We’ve got a fantastic new telescope being built in the next several years: the Square Kilometer Array. It’ll be the largest telescope ever built, addressing a huge number of scientific questions. We’re currently in the stage of building prototype telescopes, but those telescopes are already producing useful science – some of which I learned of today. We have a reasonable understanding about how things like magnetic fields affect both the formation and evolution of galaxies. Radio observations have a unique way of detecting and leveraging these detections; through polarization of the radio signal, we can measure the magnetic field and directly probe (through its signal) the interactions with matter between its source and our telescopes. New phenomena like fast radio bursts are, I think, a really neat way of measuring both the amount and distribution of matter in the Universe – this has implications for everything from star formation to cosmology.

Really excited for the rest of the week (including more Radio Galaxy Zoo results) – will post again tomorrow!

New images for Galaxy Zoo! Part 2 – Illustris

We’re extremely excited to announce the launch of two new image sets today on Galaxy Zoo. Working with some new scientific collaborators over the past few months, we’ve been able to access data from two new sources. This blogpost will go into more details on where the images come from, what you might expect to see, and what scientific questions your classifications will help us answer. (See Part 1 of this post to learn about the other new images from the DECaLS survey).

The second set of new data comes from the Illustris Project. Illustris is a state-of-the-art simulation of the Universe, led by a large team of researchers in the US, UK, and Germany. Large-scale cosmological simulations are a critical tool in astronomy; since we don’t have laboratories where we can replicate the conditions of processes like galaxy formation, we use computer simulations to investigate them instead. Such simulations start with what we believe conditions in the very early Universe were like (which we infer from the cosmic microwave background), and can include both dark matter and baryons (particles like protons and neutrons that eventually form the stars, dust and gas in galaxies). The simulation then tracks what happens to the matter and energy over billions of years as the Universe expands, evolving according to the laws of physics that are programmed into the simulation. This includes relations like the law of gravity, which dominates how dark matter moves, and hydrodynamics, which describe the motions of the gas. It’s truly amazing – scientists can watch galaxies form and evolve over huge scales of distance and time, and compare the results to real observations to test if the physics of the simulations are correct. Illustris is one of the largest and most detailed simulations ever run, taking more than 19 million CPU hours to run on powerful supercomputers.

A large-scale projection through the Illustris volume at redshift z=0, centered on a massive cluster. The left side of the image shows the density of dark matter, while the right side shows the density of the gas in cosmic baryons.

A large-scale projection through the Illustris volume at redshift z=0, centered on a massive cluster. The left side of the image shows the density of dark matter, while the right side shows the density of the gas in cosmic baryons. Image and text courtesy of the Illustris project.

This comparison to real data is the key feature that sparked the collaboration between Illustris and Galaxy Zoo. Once the simulation is run, astronomers analyze the results to see if their galaxies match the properties of those seen in the real Universe. This includes measurements like the total number of stars formed, the ratio of stars to dark matter, and the distribution of galaxies of different masses and luminosities. Another critical parameter we want to compare is galaxy morphology; measuring the ratio of ellipticals to spirals, for example, is an important test of whether the galaxy merger rate is correct, and if the simulation codes for star formation and gravitational interaction are correct.

The Illustris scientists have created images of the galaxies from their simulation that GZ volunteers will classify by their morphology. Our comparison data set for this will be the SDSS results from Galaxy Zoo 2, and the images are designed to match the Sloan images as closely as possible. This includes the same set of filters for the telescope, sizing the images so that the galaxies look like they’re at cosmic distance from the Milky Way, and setting them against backgrounds of stars and other galaxies. The quality of the simulations and images are amazing – these look to me like real galaxies in every way. It’s something that astronomers definitely couldn’t do ten years ago.

Two galaxies from the Illustris simulation evolving in time from left to right, from when the universe was a quarter its current age, to the present. The top galaxy shows a massive, red, elliptical-shaped galaxy forming after a series of mergers with other systems. The bottom galaxy reveals the formation of a smaller, bluer, disk-shaped galaxy forming after a less violent history of interactions. Images and text courtesy of the Illustris project.

Two galaxies from the Illustris simulation evolving in time from left to right, from when the universe was a quarter its current age, to the present. The top galaxy shows a massive, red, elliptical-shaped galaxy forming after a series of mergers with other systems. The bottom galaxy reveals the formation of a smaller, bluer, disk-shaped galaxy forming after a less violent history of interactions. Images and text courtesy of the Illustris project.

Although these images aren’t of “real” galaxies, we want to emphasize again how much your classifications will help scientists to do astronomical research. Simulations like Illustris are the only way that we can probe galaxy formation and evolution as it happens. Your classifications, both from Galaxy Zoo 2 and from the new Illustris data, provide vital tests for the output and will be fed back to the science teams in order to improve future versions of these sims.

If you have questions or want to discuss anything you see in the new images, please join the discussion with scientists and volunteers on Talk. The Illustris Project also has some amazing online tools if you want to learn more, including an interactive explorer of the simulation and videos of the evolving Universe. You also can explore specific galaxies you’ve classified via GZ:Examine. As always, thanks to everyone for your help!

New images for Galaxy Zoo! Part 1 – DECaLS

We’re extremely excited to announce the launch of two new image sets today on Galaxy Zoo. Working with some new scientific collaborators over the past few months, we’ve been able to access data from two new sources. This blogpost will go into more details on where the images come from, what you might expect to see, and what scientific questions your classifications will help us answer. Part 2 of this post will discuss the other set of new images from the Illustris simulation.

The Dark Energy Camera Legacy Survey (DECaLS) is a public optical imaging project that follows up on the enormous, groundbreaking work done by the various versions of the SDSS surveys over the past decade. The aim of DECaLS is to use larger telescopes to get deeper images with significantly better data quality than SDSS, although over a somewhat smaller area. The science goals include studies of how both baryons (stars, gas, dust) and dark matter are distributed in galaxies, and particularly in measuring how those ratios change as a galaxy evolves. By adding morphology from Galaxy Zoo, our joint science teams will explore topics including disk structure in lower mass galaxies, better constraints on the rate at which galaxies merge, and gather more data on how the morphology relates to galaxy color and environment.

DECaLS observations use the Blanco telescope, which is located at CTIO in northern Chile at an altitude of 2200m (7200 ft). The telescope has a 4-m aperture mirror, giving it more than three times the collecting area of the SDSS telescope. The camera used for the survey is named DECam, a large-area and extremely sensitive instrument developed for a separate program called the Dark Energy Survey. The camera has 570 megapixels and covers a 2.2 degree field of view – more than 20 times the apparent size of the full moon! The combination of the exquisite dark-sky observing site, a sensitive wide-field camera, and larger telescope all combine to generate the new images, which will eventually include more than 140 million unique sources on the sky when DECaLS is finished.

The Victor M. Blanco 4m telescope, located at CTIO in northern Chile. Image courtesy NOAO.

The Victor M. Blanco 4m telescope, located at CTIO in northern Chile, is carrying out the observations for the DECaLS survey. Image courtesy NOAO.

The DECaLS images in Galaxy Zoo are a smaller group taken from a catalog called the NASA-Sloan Atlas. We’re focusing on somewhat larger and brighter galaxies from the catalog. The reason is that although many of these galaxies have been classified in GZ already via their Sloan images, we’re particularly interested in measuring details like tidal tails from mergers, seeing fainter spiral structures, and separating galaxies that couldn’t be individually resolved in the Sloan data. Here’s a great example of a single galaxy in both SDSS and DECaLS – check out how much clearer the spiral arms are in the new images!

Left: an SDSS image of the galaxy J225336.34+000347.4. Right: a DECaLS image of the same galaxy.

Left: an SDSS image of the galaxy J225336.34+000347.4. Right: a DECaLS image of the same galaxy.

Almost all of the morphology and classification tasks are the same as they were for the Sloan images, so it should be familiar to most of our users. If you have questions or want to discuss anything you see in the new images, please join the discussion with scientists and volunteers on Talk. As always, thanks for your help!

Eight years and eight different types of galaxy images

One of the wonderful things we’ve been able to do with Galaxy Zoo over the years is to use the same site to classify many different types of images of the sky. These include surveys that come from a range of telescopes, both on the ground and in space, images at a range of wavelengths, and covering different areas of the sky. We need these different sets of images because they drive the wide variety of scientific questions that the science team studies using galaxy morphology. As part of our celebration of eight years of Galaxy Zoo, I wanted to highlight the different datasets we’ve been able to classify over the years.

Sloan Digital Sky Survey (Legacy Sample)

The bulk of the data used in both the original Galaxy Zoo and Galaxy Zoo 2 projects. These images were taken by the SDSS telescope, located in the mountains of New Mexico, and provided almost 900,000 individual galaxies that volunteers helped to classify.

Spiral galaxies from SDSS and Galaxy Zoo (Lintott et al. 2008)

Spiral galaxies from SDSS and Galaxy Zoo (Lintott et al. 2008)

COSMOS (Hubble Space Telescope)

The Cosmological Evolution Survey (COSMOS) was a dedicated campaign to image the same 2-square-degree field of the sky with more than a dozen telescopes, from radio through X-ray. 86,314 images of galaxies in the COSMOS field taken with Hubble were classified as part of the Galaxy Zoo: Hubble project.

Unbarred spiral galaxies from COSMOS and classified in GZ: Hubble. From Melvin et al. (2014).

Unbarred spiral galaxies from COSMOS and classified in GZ: Hubble. From Melvin et al. (2014).

CANDELS (Hubble Space Telescope)

The Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey (CANDELS) was the largest project in the history of Hubble, with the equivalent of more than four straight months of observing time. Using the near-infrared WFC3 camera, Hubble image some of the earliest massive galaxies, formed only 2-3 billion years after the Big Bang. 49,555 images from CANDELS were classified in Galaxy Zoo from 2012-2013.

Disk galaxies in CANDELS, including those without bars (top row) and those with bars (bottom row). From Simmons et al. (2014).

Disk galaxies in GZ:CANDELS, including those without bars (top row) and those with bars (bottom row). From Simmons et al. (2014).

UKIDSS (infrared images)

The United Kingdom Infrared Telescope, located near the summit of Mauna Kea in Hawai’i, carried out a large survey at infrared wavelengths, ranging from 1 to 3 microns. This survey (UKIDSS) allows us to compare morphologies of the same galaxies between optical and infrared, probing the effects of galactic dust and different stellar populations. 70,503 galaxies from UKIDSS have been classified by Galaxy Zoo volunteers.

Even though the optical SDSS image (left) is deeper than the near-IR UKIDSS image (right), you can still see that the UKIDSS image is less affected by the dust lanes seen at left.

A spiral galaxy with dust lanes, seen in both the optical (SDSS; left) and the infrared (UKIDSS; right).

FERENGI (artificially-redshifted)

One of the critical issues with all Galaxy Zoo data has been calibration of the morphologies we measure, especially in distant galaxies where small and/or faint images can affect the accuracy of classifications. Using a piece of software called FERENGI, we artificially processed SDSS images to make them appear as if they were much further away, and we’re using those classifications to calibrate the data from Hubble. This included 6,624 images of galaxies at a range of distances and brightnesses.

An SDSS image of a barred spiral, artificially processed to appear as if it were at a variety of distances.

An SDSS image of a barred spiral, artificially processed to appear as if it were at a variety of distances.

GOODS (Hubble Space Telescope)

The Great Observatories Origins Deep Survey (GOODS) is another multi-wavelength survey of the sky, focusing on data from NASA’s flagship space telescopes of Hubble, Chandra, and Spitzer (plus others). We not only study high-redshift galaxies using GOODS data in Galaxy Zoo, but also measure how increasing the sensitivity of the images can change the apparent morphology. 11,157 GOODS images have been classified in Galaxy Zoo at both shallow and deep imaging depths.

Comparison of the different sets of images from the GOODS survey taken with the Hubble Space Telescope. The left shows shallower images from GZH with only 2 sets of exposures; the right shows the new, deeper images with 5 sets of exposures now being classified.

Comparison of the GOODS images classified in Galaxy Zoo. The left shows shallower images with only 2 sets of exposures; the right shows the deeper images with 5 sets of exposure.

Flipping spiral galaxies

One of the very first Galaxy Zoo papers addressed a fundamental question: are spiral galaxies in the Universe more likely to spin clockwise, counterclockwise, or equally likely in both directions? To measure this, we used images of spiral galaxies that were artificially flipped, which helped us correct for a psychological bias in the human brain that exhibits a slight preference for counterclockwise spins.

Images of four spiral galaxies, both as the originals (top) and horizontally flipped (bottom).

Images of four spiral galaxies, both as the originals (top) and horizontally flipped (bottom).

Single-band SDSS (ugriz)

The latest new set of data used SDSS galaxies again. Instead of making the “color” images that we’ve used before, however, Galaxy Zoo volunteers were asked to classify images from the five individual filters in SDSS, spanning light from the near-ultraviolet to the near-infrared. This will allow us to better measure how morphology can change as a function of observing wavelength, and determine which physical processes in the galaxy are responsible for the light that defines how we measure the shapes.

Example postage stamp images of the monochromatic single filter images.

Single-band filter images of galaxies from the SDSS.

More to come soon. Thanks again for all your help with what we’ve done so far!!!

Now back in Technicolor!

The science team and I want to thank to everyone who’s helped participate in the last month of classifications for the single-band Sloan Digital Sky Survey images in Galaxy Zoo, which were finished last night! The data will help us answer one of our key science questions (how does morphology change as a function of observed wavelength?), helping explore the role played by dust, stellar populations of different ages, and active regions of star formation. Researchers, particularly those at the University of Portsmouth, are eager to start looking at your classifications immediately.

Not saturated enough to be Technicolor, strictly speaking.

“Look, Toto – Galaxy Zoo’s back in color!” (Image courtesy MGM/Ryan McCormick)

In the meantime, we’re returning to images that are likely more familiar to many volunteers: the SDSS gri color images from Data Release 8. These galaxies still need more data, especially for the disk/featured galaxies and detailed structures. However, we should have two new sets of data ready for classification very soon alongside the SDSS, including a brand-new telescope and something a little different than before.

Please let us know on Talk if you have any questions, particularly if you have feedback about the single-band images or the science we’re working on. Thanks again!!

Finished with Hubble (for now), with new images going back to our “local” Universe

Thanks for everyone’s help on the recent push with the Hubble CANDELS and GOODS images. I’m happy to say that we’ve just completed the full set, and are working hard on analysis of how the new depths change the morphologies. In the meantime, we’re delighted to announce that we have even more new images on Galaxy Zoo!

The new set of images now active are slightly different for us, and so we wanted to explain here what they are and why we want to collect classifications for them.

In all phases of Galaxy Zoo so far we have shown you galaxy images which are in colour. The details of how these are created varies depending on which survey the images are from. With the SDSS images, we combine information from three of the five observational filters used by Sloan (g, r, i) to produce a single three-colour image for each galaxy. We’ve talked before in more detail about how those colour images are made. All five Sloan filters and their wavelengths and sensitivity are shown below. You can probably see why we’d pick gri for our standard colour images: these are the most sensitive filters, roughly in the “green”, “red” and “infrared” (or just about) parts of the spectrum.

SDSS Filters

The five SDSS filters and the wavelengths they span.

 

Each of the SDSS filters is designed to observe the galaxy at a different part of the visible (or near visible) spectrum, with the bluest filter (the u-band; just into the UV part of the spectrum) and the reddest the z-band (which is into the infra-red). Different types of stars dominate the light from galaxies in different parts of the spectrum, for example hot massive young stars are very bright in the u-band, while dimmer lower mass stars are redder. Galaxies with older populations of stars will therefore look redder, as the massive blue stars will all have gone supernova already.

We are interested in measuring how a galaxy’s classification differs when it’s observed in each of the filters individually. To investigate this specific question, we have put together a selection of SDSS galaxies and instead of showing you a single three-colour image for each, we are showing you separately the original single filter images. We want you to classify them just as normal, and we will use these classifications to quantify how the classification changes from the blue to the red images.

Example postage stamp images of the monochromatic single filter images.

Example postage stamp images of the monochromatic single filter images.

Astronomers have a good “rule of thumb” for what should happen to galaxy morphology as we move to redder (or bluer) filters, but it’s only ever been measured in very small samples of galaxies. With your help we’ll make a better measurement of this effect, which will be really useful in the interpretation of other trends we observe with galaxy colour.

(Hint: some users might want to use the “Invert” button on the Galaxy Zoo interface a little bit more for these images, as some galaxies are more clearly seen when you toggle it.)

Visualizing the decision trees for Galaxy Zoo

This post (and visualization) is by Coleman Krawczyk, a Zooniverse Data Scientist at the ICG at the University of Portsmouth

Today we’ve added a new tool that visualizes the full decision tree for every Galaxy Zoo project from GZ2 onward (GZ1 only asked users one question, and would make for a boring visualization).  Each tree shows all the possible paths Galaxy Zoo users can take when classifying a galaxy.  Each “task” is color-coded by the minimum number of branches in the tree a classifier needs to take in order to reach that question.  In other words, it indicates how deeply buried in the tree a particular question is, a property that is helpful when scientists are analyzing the classifications.

Galaxy Zoo has used two basic templates for its decision trees.  The first template allowed users to classify galaxies into smooth, edge-on disks, or face on disks (with bars and/or spiral arms) and was used for Galaxy Zoo 2, the infrared UKIDSS images, and is currently being used for the SDSS data that is live on the site. The second template was designed for high-redshift galaxies, and allows users to classify galaxies into smooth, clumpy, edge on disks, or face on disks. This template was used for Galaxy Zoo: Hubble (GZ3), FERENGI (artificially redshifted images of galaxies), and is currently being used by the CANDELS and GOODS images in GZ4.  Although these final three projects ask the same basic questions, there are some subtle differences between them in the questions we ask about the bulge dominance, “odd” features, mergers, spiral arms, and/or clumps.

Visualization of the decision tree for Galaxy Zoo 2 (GZ2), by C. Krawcyzk. Colors indicate the depth of a particular question within the decision tree.

Visualization of the decision tree for Galaxy Zoo 2 (GZ2), by C. Krawczyk. Colors indicate the depth of a particular question within the tree.

If you ever wanted to know all the questions Galaxy Zoo could possibly ask you, head on over to the new visualization and have a look!