Jargon Alert: Your IMF Just Messed With My SPS!

I remember going to a lecture as an undergraduate wherein my professor compared what astronomers do to a hypothetical alien crew on a fast-moving ship that can only take one photo of the Earth as it passes by. We can assume they have a special camera that can see through buildings, but otherwise they just get one photo of, say, a major city, and from that they have to try and learn as much as they can about the human race. How hard would it be to discover that our species has two genders? Or that both of them are required to propagate the species, but only one gives birth? Would it be possible to figure out the whole human life cycle? To discover what disease is? To distinguish between genetics and culture (nature and nurture)? Just having one picture is limiting, but with careful study you can learn more than you think.

H-R Diagram

One of the most fundamental plots in astronomy.

The professor was drawing an analogy with the Hertzsprung-Russell diagram in particular, which we’ve talked about before on our hangouts: to make it, you record the color and the luminosity of all the stars you can and plot them up against each other, one point per star. The stars group together in interesting ways in particular areas of the diagram, and it turns out that from this diagram alone you can recover an enormous amount about the life cycles of a population of stars (for example, in a star cluster, a neighborhood of our own galaxy, or a nearby galaxy). You can learn even more if you couple the diagram with spectra of stars from different parts of it. Studying stellar populations has helped us understand the fundamentals of what kinds of stars exist, how they are born and die, and how many stars of any given mass are likely to develop in a galaxy in relation to stars of different masses. That last thing is called the Initial Mass Function (IMF for short). Essentially it says that, when stars form in groups, more low-mass stars form than high-mass stars. Put that together with what we know about how much brighter high-mass stars shine and how much faster they die than low-mass stars, and you can start to understand how whole populations of stars in galaxies form and evolve.

And we can apply our studies of nearby galaxies and groups of stars to galaxies we observe much farther away. It’s a good thing, too, since most galaxies are far enough away that our current telescopes can’t resolve individual stars. We just get the sum of the light from all the stars. That combined light is sometimes made up of multiple populations of stars that formed in groups at different times and now all live together in a particular galaxy. Taking that single picture combining the light from billions (often hundreds of billions) of stars and using it to learn about the stars’ masses, ages and histories is an important process, and there are several ways to do it: one way combines models of stellar populations made by forming and evolving many stars in a computer simulation. This is sometimes called Stellar Population Synthesis, or SPS.

On today’s live Hangout, we once again let your questions guide us as we talked about IMFs and what they have to do with SPS and measuring the stellar masses of galaxies. The work that laid the foundations for today’s study of galaxy stellar populations was done in large part by women (Bill mentioned Beatrice Tinsley, for example), which is fitting since today is International Women’s Day. We talked about that too, and about diversity in general in astronomy. Just as you can learn a lot from even one snapshot of a galaxy, you can do a lot with just a bit of mindfulness about being an ally for diversity (Kyle noted on Twitter that World Day for Cultural Diversity is May 21), be it equality for women or for any other minority groups in science, or indeed any field.

Here’s the audio-only version of the Hangout: click to listen to mp3 version.

And the video:

We’ll post about our next hangout soon; in the meantime, keep those questions coming!

Next GZ Hangout: Friday, 8th March, 15:30 GMT

Next Galaxy Zoo Hangout: Friday, the 8th of March, 2013, 3:30 p.m. GMT

Want to contribute for our next hangout? Post your questions & comments below and/or feel free to tweet them @galaxyzoo or post them on Facebook.

Shortly before the hangout starts, we’ll embed the video in this post so you can watch from here. And during the chat, if we use a science term you aren’t familiar with, please use the Jargon Gong by tweeting us with a GONG (example: “@galaxyzoo GONG forbidden [OIII] atomic transition” — not that I’m quoting the last hangout or anything); we’ll be happy to explain!

Update: video now available at the hangout summary post!

Green Valley: The Town Too Good To Die

Galaxies of different colors

I swear we are consistently trying to keep our live hangouts to about 15 minutes. We have so far failed at keeping to time, but hopefully also succeeded in the sense that we only run over because there’s so much to discuss.

We had a number of good questions from Twitter, Facebook and the blog about various types of galaxies — from red spirals to green peas and blue ellipticals — and I rather arbitrarily decided this was an indication that our hangout should have a color theme. That is, what exactly does “color” mean in the context of astronomy? What is going on physically when a galaxy is one color versus another, or has multiple colors? Is color information always telling us the same thing? We tried to address all those questions, as well as show some examples of different galaxies in the above queried categories. As a bonus, we learned how galaxy colors are related to the town my grandparents retired to. (This post’s title is a quote from the Green Valley Chamber of Commerce’s official website.) That was as much a surprise to me as it was to the viewers!

We also talked about what’s currently going on in Galaxy Zoo behind the scenes. Earlier today, Kyle sent around a really nice draft of the Galaxy Zoo 2 data paper for the team to read and comment on (you’ll have to watch the video to get a sneak peek at some of the figures).

And it’s that time again: Hubble Space Telescope proposals are due in about a week. We talked about the proposal process from concept to submission to review, discussing both specifics of certain telescopes and the general practices that (we hope) help lead to a successful proposal. Here’s a hint: it may not be what you think!

We covered all this and some other questions, too. No wonder we ran a little over…

And here’s the podcast version:

Download MP3 file

GZ4 merger or overlap set

Is it a triple merger? A double overlap? A hybrid?

Spiral Colors

A blue(ish) and red spiral.

Elliptical colors

A red and blue elliptical.

Green pea

A tiny green pea galaxy, and zoomed-in at right.

Next Galaxy Zoo Hangout: 22 Feb, 15:30 GMT

Next Galaxy Zoo Hangout: Friday, the 22nd of February, 2013, 3:30 p.m. GMT

We got a lot of good questions for the last live chat — keep ’em coming! Post your questions below and/or feel free to tweet them @galaxyzoo.

Shortly before the hangout starts, we’ll embed the video in this post so you can watch from here. And during the chat, if we use a science term you aren’t familiar with, please use the Jargon Gong by tweeting us with a GONG (example: “@galaxyzoo GONG spiral density wave”); we’ll be happy to stop and explain!

Update: The summary of the hangout, and the video, are now here.

Live Chat: Galactic Rings, Secular Evolution and The Good Old Days

GdV 3D morphological classification

It’s amazing what happens when you actually publicize your live chat in advance. We got so many questions, we decided to spend the entire chat just discussing them, and we still didn’t finish!

Partly that’s because we had a surprise guest appearance from the esteemed Ron Buta, who came in just after we had talked about some of the details covered in his Galaxy Morphology article (his Figure 3 is shown in the image). Ron worked with Gérard de Vaucouleurs — aka GdV — and told us some amusing stories about trying to take photometric* observations of dwarf galaxies, and about how GdV’s wife used to disagree with his morphologies, at one point looking over his shoulder and proclaiming, “no, there’s no ring”. I rather liked that story as it’s a reminder that anyone can spot patterns in galaxy images.

We’ll try to answer those questions on the previous blog post that we didn’t get to there — but in the meantime, here’s the video:

Left to right: Ron Buta & Bill Keel, Karen Masters, Kevin Schawinski, Brooke Simmons (me). Toward the end (not shown on the thumbnail), Kyle Willett arrived just in time to answer a question about the status of the latest Galaxy Zoo classification set.

We made ample use of the jargon gong on ourselves, but we may not have managed to define all the terms Ron used. We’ll try to do so in this post — if we’ve missed any please say so in the comments!

*photometry = precise quantitative measurements of the brightness of objects in the sky. You need very good observing conditions to take photometric measurements, which many (but not all) astronomical projects require.

Update: Now in podcast form:

Download MP3 file

Ask us your questions for the next Live Chat!

Next Galaxy Zoo Live Chat: Friday, the 8th of February, 2013, 3:00 p.m. GMT

Topic: TBA! (Translation: we’re just going to wing it.)

We’ve already had some good questions submitted for our live chat, ranging from detailed inquiries about galaxy evolution to the orbital mechanics of moons. If you have a question for us, post it below and we’ll try to answer it! (You can also tweet questions @galaxyzoo at any time.)

Update: see questions answered in the Live Chat video here!

Spiral Galaxies and the Future of Citizen Science: a Live Chat

Last week Karen Masters suggested that we start doing Galaxy Zoo live chats a little more often. I thought that sounded like a great idea, and we figured we’d just have an informal chat about whatever galaxy/Zooniverse topic we felt like discussing that day.

We were joined by Kyle Willett and Kevin Schawinski, and the four of us started talking about this paper, which presents an automated system for classifying and measuring spiral arms. It compares to Galaxy Zoo 2 data within the text, and we talked about what the fact that the computers did pretty well means for the future of Galaxy Zoo. We didn’t prepare anything in advance, and I didn’t even start reading the paper until about 20 minutes before we got going. So my favorite part of the chat is where I put forward a few definitions of pitch angle and get them all wrong. Science in action!

We also introduced the jargon gong, which we used on each other whenever one of us said something in insider-speak. I think this is a feature worth keeping, and we also plan to invite viewers to gong us themselves via Google+ or Twitter for the next chat.

When will the next chat be? We’re not sure yet, but hopefully soon — I promise I’ll even try to make a blog post before we start next time!

Update: We’ve now extracted the audio into an mp3 file and started a podcast:

Download MP3 file

Galaxy Zoo 2 at the AAS meeting

This post was written by Kyle Willett. He is a postdoc at the University of Minnesota and a member of the Galaxy Zoo science team. 

It’s been a couple of weeks since the 221st meeting of the American Astronomical Society (AAS) in Long Beach, California. Kevin and Bill already made several excellent posts on their conference experience (tip: showing data hot off the telescope and having Swiss chocolate at your poster really generate foot traffic). I wanted to write a bit more about the research that I presented and how it related to other topics at the meeting.

My poster was up during on the third day of AAS, in the “Catalogs” section of the big poster hall. This is a bit unusual in that the posters there were sorted more by their methods, rather than science content. A group like this is useful for identifying projects with similar challenges, including curation of large data sets, reduction techniques, and how to best publish the data so the scientific community will recognize and use it. The content varies widely, though – I got to compare what galaxy morphologies might have in common with catalogs of bright stars, exoplanets, and infrared mosaics.

Kyle Willett (@kwwillett) talking about GZ2 with Nicole Gugliucci (@NoisyAstronomer)

Kyle Willett (@kwwillett) talking about GZ2 with Nicole Gugliucci (@NoisyAstronomer). Photo by W. Keel.

The content of my poster focused on three topics. The first was a description of the Galaxy Zoo 2 project, describing the new questions we developed (and that you answered) and the sample of galaxies in the Sloan Digital Sky Survey that the results cover. This is slightly different from the original Galaxy Zoo, since GZ2 uses a brighter sample of galaxies in which more detail can be seen.

The second portion was my work on data reduction for the Galaxy Zoo 2 catalog; in particular, the way in which we demonstrate that more distant galaxies appear smaller and dimmer in the classification interface, and how this can be corrected. I showed data for 4 of the questions (smooth vs. features? is it an edge-on disk? is there a bar? are there spiral arms?) as examples of successful corrections that we’ve already done. The remaining 7 are being finished this week, with results looking good so far.

Finally, I had a section summarizing the science results from using Galaxy Zoo 2 data. So far, these have all been led by members of our own science team (which you can find here). Our goal in releasing the full catalog, though, is to make GZ2 a community resource – we want other groups to use the data and write even more interesting papers. We know we have a unique data source – the challenge is to reduce it properly, put it in a useful public format, and help publicize it by writing papers and attending conferences.

I had a lot of good conversations with other astronomers at this meeting, many of whom are very keen to see the data come out. Several interesting presentations raised questions we can explore with GZ2. I was intrigued by Michael Rutkowski’s (Arizona State) talk on the surprising amount of star formation and diversity amongst early-type galaxies, as well as Benjamin Davis’ (Arkansas) talk on using computers to measure the angle of spiral arms and how it relates to their central black holes.

Overall, it was a great meeting both for general astronomy and for Zoo-related projects. The science team and I are finishing the first draft of the data release paper this month, and we’ll be submitting it to a journal shortly after. I’ll keep writing as we make progress – as always, thanks for your classifications that make my work possible!

How to get people to read your poster

3000 astronomers will bring down the wireless in any building, so I have been a bit behind in posting from the American Astronomical Society meeting in Long Beach CA…

Bill with the poster.

Bill with the poster.

Yesterday, Bill Keel presented a poster with the latest Hubble observations of the Voorwerpjes in the Giant Room Full of Posters, where astronomers, pretty much ALL of who work on absolutely cool stuff, present their results. So, anything you can do to get peoples’ attention helps! I decided to bring along some chocolates from Switzerland. If any unwary astronomer walked past and took one, they then had to at least look at the poster… ; )

Most of the chocolate is already gone!

Most of the chocolate is already gone!

UGC 7342 and the Hubble Voorwerpje roundup – can they get any weirder?

As usual when the American Astronomical Society meets, this has been an intense week of research results, comparing notes, and laying plans. Galaxy Zoo has once again been well represented. Here’s Kevin discussing the Green Valley in galaxy colors, making the case that it consists of two completely different populations when Galaxy Zoo morphologies are factored in:

Kevin makes his case

Kevin makes his case

Today we’re presenting first results of the Hubble imaging of Voorwerpje systems. This is what our poster looks like:

AAS poster paper on Hubble Voorwerpje data

AAS poster paper on Hubble Voorwerpje data

(or you can get the full-size 2.8 Mbyte PDF). We didn’t have room to lay out all the features we first had in mind, but these are the main points we make:

They show a wild variety of forms, often with filaments of gas stretching thousands of light-years. These include loops, helical patterns, and less describable forms.

The ionization, traced by the line ratio [O III]/Hα, often shows a two-sided pattern similar to the ionization cones around many AGN. This
fits with illumination by radiation escaping past a crudely torus-like structure. However, there is still less highly-ionized gas outside this whose energy source is not clear.

As in IC 2497, the parent galaxy of Hanny’s Voorwerp, many of these galaxies show loops of ionized gas up to 300 light-years across emerging from the nuclei, a pattern which may suggest that whatever makes the nucleus fade so much in radiation accompanies an increase in the kinetic energy driving outflows from its vicinity.

At the bottom of the poster we illustrate with new clarity a point we knew about in the original paper – for the two Voorwerpje systems with giant double radio sources, they completely break the usual pattern of alignment between the radio and emission-line axis. Mkn 1498 and NGC 5972 are aligned almost perpendicular, which can’t be fixed by changing our viewing angle. We’re speculating among ourselves as to how this could happen; maybe interaction of two massive black holes is twisting an accretion disk. But don’t quote me on that just yet.

The color images here show only the ionized gas, with [O III] in green and Hα in red. Starlight from the galaxies has been subtracted based on filters which don’t show the gas, so we can isolate the gas properties. The false-color insets show the [O III]/Hα ratio. The blank regions are areas whose signal is too low for a useful measurement. Red indicates the highest ionization, fading to deep blue for the lowest.

We were able to feature some new data that came in too late to be printed in the poster (by tacking up a smaller printed panel) – the long-awaited images of UGC 7342, among the largest and most complex clouds we’ve found (or more correctly, so many Galaxy Zoo participants found). Hubble observed it Monday afternoon, and after some frantic file-shuffling and processing, I got the data in the same shape as the others. And here it is:

UGC 7342 Hubble image

UGC 7342 Hubble image

Click on this one to see it larger. We barely know where to begin. The actual AGN may lie behind a dust lane, and there is a large region of very low-ionization as near it. Another loop near the nucleus, and fantastically twisted filaments winding their way 75,000 light-years each way.

There is still more to come – with Vardha Bennert and Drew Chojnowski, we planned the strategy for several upcoming observing runs at Lick Observatory (one starting only next week). These should include getting data on some of the most promising AGN/companion systems to look for the AGN ionizing gas in companion galaxies, and observation of regions in the Voorwerpjes that we only now see a context for. Additional X-ray and radio observations could fill in some of the blanks in our understanding. And by all means, stay tuned!